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Abstract

We study the number, size, and location of a firm’s plants. The firm’s decision balances the benefit

of delivering goods and services to customers using multiple plants with the cost of setting up and man-

aging these plants, and the potential for cannibalization that arises as their number increases. Modeling

the decisions of heterogeneous firms in an economy with a vast number of widely distinct locations is

complex because it involves a large combinatorial problem. Using insights from discrete geometry, we

study a tractable limit case of this problem in which these forces operate at a local level. Our analysis

delivers predictions on sorting across space for industries with many plants per firm. Compared with less

productive firms, productive firms place more plants in dense high-rent locations and place fewer plants

in markets with low density and low rents. Controlling for the number of plants, productive firms also

operate larger plants than those operated by less productive firms. We present evidence consistent with

these and several other predictions using U.S. establishment-level data.
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1 Introduction

Delivering products and services to locations where consumers can easily access them involves complex

decisions about where to locate plants and how large these plants should be. Having too few establishments

is costly because it increases the distance to consumers. Having too many involves large span-of-control and

fixed costs, as well as plants that cannibalize each other’s customers. Understanding how these trade-offs

play out for firms with different characteristics in an economy consisting of many local markets that differ

in demand and production costs is complex. Perhaps due to the difficulty of the problem, little is known

about the solution to this fundamental problem of how to organize production. The sorting of firms in space

determines not only the profitability of firms but also consumers’ surplus as well as the characteristics of

individual locations. In this paper, we study this core component of a firm’s production problem, provide a

methodology that simplifies it significantly, and contrast its implications with the data.

Consider the case of Starbucks, which operated around 14,000 stores in 2019 in different locations across

the US. Of course, not all Starbucks are equal in size, not all locations in the US have a Starbucks, and the

distance between neighboring Starbucks stores in a location differs across space. Simply put, there is a lot

of variation across space in how individual stores are arranged. This variation is naturally related to the

spatial distribution of population density, of wages, and other characteristics. For example, Figure 1 shows

the location of Starbucks’ establishments in three markets, Princeton NJ, Richmond VA, and New York NY.

Clearly, the number of establishments as well as the distance between them varies across these cities. Even

within New York, the number of establishments is much larger, and the distance between them is much

shorter, in the densest parts of Manhattan. What are the general characteristics of establishment location

decisions? Clearly density matters, but the scale of establishments is by no means constant in space. The

average plant employment of Starbucks in New York is more than 23% higher than in Richmond.

Casual evidence and introspection might suggest that firms simply sell in the densest markets with

the marginal market determined by a firm’s productivity. A closer look, however, reveals a more nuanced

pattern. Figure 2 provides a simple example. Walgreens and Rite Aid are pharmacies that operate nationally,

but Walgreens’ total employment is larger and it has more establishments. The figure shows that, in fact,

both pharmacy chains tend to have more establishments in more dense locations. However, Rite Aid has

more stores than Walgreens in less dense locations. Is this form of sorting across locations a general feature

of the solution to the location problem or of the data?

More generally, we aim to provide insights into two main questions: First, which firms set up plants in

which locations? Second, what determines the scale and location of production? Answering these questions

requires us to think about plants and firms as distinct, albeit related, economic entities. In particular, we set

up an economy with a continuum of heterogeneous locations. These locations have different productivities

and amenities that determine, in general equilibrium, the distribution of population density, wages, and res-

idential and business rents. It also determines, given the form local competition takes in a location, residual

demand for a firm’s product. We focus primarily on the problem of a firm that takes these distributions as
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Figure 1: Density of Starbucks Locations

Princeton Richmond New York

Notes: The figure shows the locations of Starbucks establishments in a 12 × 12 square mile area in Princeton, Richmond, and New
York City.

Figure 2: Sorting: Walgreens vs. Rite Aid

Notes: For Walgreens and Rite Aid, this graph plots the cumulative number of establishments in locations with populations density
weakly less than each population density. Population density is measured as the population density of the 6× 6 mile square in which
the establishment is located, using data from the 2010 decennial census taken from Manson et al. (2021).
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given and needs to decide if and how to serve each consumer. The firm decides where to set up production

plants, how large each plant should be, and from which plant to serve each of its customers. We assume that

firms face iceberg transport costs. Setting up a plant entails a fixed cost that depends on local land rents.

The productivity of a plant depends on local characteristics as well as a firm-specific component that de-

creases with the total number of plants the firm operates. In other words, increasing a firm’s span-of-control

by adding plants implies a management cost that lowers its productivity. The main trade-off faced by the

firm, therefore, is to reduce transport costs by setting up more plants close to consumers versus setting up

fewer plants to economize on fixed costs, augment productivity by lowering its span-of-control, and reduce

cannibalization between plants. Ours is a standard setup of this canonical firm decision problem.

Solving this production problem when the set of potential locations is large and heterogeneous involves

a large and challenging combinatorial optimization problem. Our contribution is to focus on a limit formu-

lation of the problem in which the firm chooses a density of plants, rather than a discrete set. The firm’s

problem then becomes one of calculus of variations which is simpler to solve. Crucially, in the limit we

propose, all relevant trade-offs described above remain active. Specifically, we study a limit of the problem

in which fixed and span-of-control managerial costs become small while transportation costs become large.

In this limit economy, the problem of the firm becomes amenable to an analytical characterization, making

it easy to transparently characterize its implications.

In characterizing the solution to the firm’s problem in the limit economy, we apply insights from discrete

geometry, exploiting the sum of moments theorem by Fejes Toth (1953). The theorem provides the optimal

way to arrange plants across space when economic activity is uniform and the number of plants is large.

When space is one-dimensional, plants should be located at the center of equal-length intervals. In two

dimensions, the result states that plants should be located at the center of catchment areas given by hexagons

arranged so as to cover all locations. The intuition for this result is that, among all polygons with which one

can construct a uniform tessellation, the hexagon is the closest to a circle.1 A circle minimizes the average

distance from a plant located at its center to its customers. However, unlike hexagons, circles cannot be

used repeatedly to form a tessellation. We extend the theorem to an environment where economic activity

is heterogeneous across space. Specifically, customers are not necessarily uniformly distributed across space

while plant costs and productivities also differ across locations.

Apart from being obviously important for practical applications, our extension of the theorem allows us to

study sorting patterns, namely the many-to-many matching between heterogeneous firms and heterogeneous

locations. It helps us understand examples such as Starbucks, or Walgreens and Rite Aid, for which the

number of establishments changes with customer density but at different rates and with different ranges of

locations that vary with the firm’s aggregate scale. In general, our theory delivers testable implications on

sorting patterns across firms for industries that are well approximated by our limiting economy—industries

for which catchment areas are small. First, more productive firms set up more plants in denser, high rent,

locations than less productive firms. Perhaps more surprising is that they also set up fewer plants in markets

1A tessellation is an arrangement of shapes, especially of polygons, in a repeated pattern without gaps or overlaps.
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with lower density and rents. For highly productive firms, the span-of-control cost of managing additional

plants in low-density locations outweighs the benefits of low rents. In contrast, for less productive firms,

low local rents are more attractive since they manage fewer plants and so span-of-control costs are less

relevant. Second, among firms that operate the same number of plants in a location, the plants from the

more productive firm are larger in that location. Highly productive firms obtain large variable profits from

each plant but limit the number of plants in a location due to the span-of-control cost they impose on the

whole firm. Hence, when they set up the same number of plants as a less productive firm in a location,

they choose to make these plants larger. In the final section of the paper, we present evidence, using the

National Establishment Time Series (NETS) dataset, that corroborates these and other predictions of our

theoretical analysis.

One of the advantages of using our limit economy to analyze the firm production problem is that the

simplicity of the solution allows us to embed the problem into an equilibrium setup. To illustrate this

without adding too much additional structure, we embed the firm’s problem into a small industry that

does not affect local characteristics.2 We show that, in equilibrium, the local industry price index is a

function of local productivity and a weighted sum of the productivity of all firms present in the location,

with weights that depend on each firm’s local footprint which determines the cost of delivering goods to

customers. These are the only local characteristics that determine equilibrium outcomes. Analyzing realistic

quantitative equilibrium counterfactuals is not the focus of our study, but the method we develop to make

the firm’s problem tractable can be readily used to do so. We provide an algorithm to compute an industry

equilibrium of our economy and illustrate the effect of improvements, in a single industry, in the technology

to manage a firm’s span-of-control and the technology to transport goods.

Canonical models of firm dynamics (i.e. Jovanovic (1982) and Hopenhayn (1992)) make no clear dis-

tinction between a plant and a firm. However, mounting evidence points to the importance of considering

plants and firms as different but related entities. Rossi-Hansberg and Wright (2007) highlight large differ-

ences between the size distributions of enterprises and establishments. In addition, Rossi-Hansberg et al.

(2021) show evidence of diverging trends in market concentration at the national and local levels resulting

from the expansion of the largest firms into new markets. Hsieh and Rossi-Hansberg (2022) show that

industries with large increases in national market concentration also saw their top firms expand their oper-

ations geographically through the opening of new plants in smaller markets. Further, Aghion et al. (2019)

observe that the average number of plants per firm has risen considerably in the US, and Cao et al. (2019)

and Aghion et al. (2019) provide evidence that growth through the opening of new plants has been a key

margin of firm employment growth since 1990.

The distinction between firms and plants has been more prevalent in the international trade literature

given the interest in multinational production and export platforms. Examples of papers in this literature

include Ramondo (2014), Ramondo and Rodŕıguez-Clare (2013), and Tintelnot (2016), among many others.

2Setting up the model in full general equilibrium with many industries and labor mobility is straightforward but requires
making assumptions on a number of economic fundamentals that are unrelated to our main focus.
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Ramondo and Rodŕıguez-Clare (2013) and Arkolakis et al. (2018) use a probabilistic structure that is

remarkably tractable. Each plant’s technology is constant returns to scale, so decisions on how to serve

each market are independent across markets. Introducing fixed costs of setting up plants or span-of-control

costs would render the model intractable. In general, the firm’s plant location problem can be split into

two parts: an inner problem of establishing the set of locations serviced by each of a firm’s plants, their

“catchment areas”, and an outer problem of determining the location and number of plants. Tintelnot (2016)

introduces fixed costs and solves the inner problem by assuming that firms sell a continuum of products and

that plant productivities follow an extreme value distribution, which implies that plants sell to all locations.

This smooths out the firm’s objective function but still requires solving the combinatorial problem of where

to set up plants and how many. All frameworks in this literature either solve the combinatorial problem

with only a few countries or assume away fixed costs of setting up new plants. Methodologically, our main

contribution is to solve the outer problem and characterize it analytically in a limiting case where all costs

remain relevant. In contrast to the multinational literature, which has focused mostly on manufacturing,

the particular limiting economy we study is likely to be a better approximation to industries with high

transport costs, where the number of plants per firm is large. Substantially, our main contribution is to

incorporate span-of-control costs to the firm’s problem and to characterize the resulting sorting patterns.

Most models in the literature have the feature that the less profitable markets are reached only by the more

productive firms. In contrast, our environment is one in which it is the less productive firms that locate in

the more marginal markets.

The industrial organization literature has also analyzed how individual firms set up distribution networks

in space. Seminal papers include Jia (2008) and Holmes (2011). Importantly, many of these frameworks

study cases where opening stores in one location increases the marginal value of opening stores in other

locations, the so-called “supermodular” cases.3 The lack of cannibalization across plants makes these cases

somewhat easier to handle. On the contrary, cases where cannibalization is prevalent, so that setting up

new plants reduces the value of other plants, cannot easily be solved except for algorithms that, at worst,

evaluate all possible combinations. Recently, Arkolakis et al. (2017) and Hu and Shi (2019) have developed

algorithms to solve these types of “submodular” problems more efficiently by iteratively pruning the choice

set, but doing so for large numbers of locations remains a challenge. Furthermore, the purely numerical

nature of essentially all this literature implies that few general insights have been obtained. Our analytical

approach has the advantage of providing a set of general implications that we can contrast with micro data.

There is a large, active literature in Operations Research studying the facility location problem. The

classic Weber problem of placing a single plant to serve many destinations at minimal cost (Weber (1909))

was generalized to study the placement of multiple plants by Stollsteimer (1961) and Balinski (1965).

There are many versions of the problem. One approach, used by much of the economics literature, studies

the problem with a finite set of discrete locations. The alternative, which we follow, models space as

continuous. Another distinction is whether or not there are limits on each plant’s output (these are known

3Holmes (2011) assumes submodularity but does not solve the model; he estimates parameters using moment inequalities.
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as the capacitated or uncapacitated facility location problems). Given the complexity of the problem, the

literature has focused on numerical algorithms that deliver approximate solutions in polynomial time.4

We provide a characterization of the matching of heterogeneous firms with multiple plants to heteroge-

neous locations. Nocke (2006), Gaubert (2018), and Ziv (2019) study the assignment of single-plant firms to

heterogeneous locations. Behrens et al. (2014), Eeckhout et al. (2014), Diamond (2016), Davis and Dingel

(2019) and Bilal and Rossi-Hansberg (2021), study the assignment of workers to heterogeneous locations.

None of these papers, however, address sorting when the agent, in our case a firm, can choose many locations

concurrently.5

The rest of the paper is organized as follows. Section 2 presents the problem of the firm, proposes and

studies the limit problem, and derives our main results. Section 3 embeds heterogeneous firms solving the

production problem with multiple plants into an industry equilibrium. It also presents numerical examples

that illustrate the effect of changes in the efficiency of span-of-control and transport costs. Section 4 contrasts

some of the main implications of our solution with panel data of firms and establishments. Section 5

concludes. An Appendix includes all technical derivations, presents additional robustness results and data

constructions details, and describes the numerical algorithm.

2 The Multi-plant Firm Problem

We consider the problem of a firm deciding how to serve customers located in a unit square, S = [0, 1]d ⊂ Rd,

where d ∈ {1, 2} is the dimension of the space.6 Each location s ∈ S is characterized by an exogenous

productivity level Bs, as well as local equilibrium characteristics that firms take as given, namely, the

residual demand function, Ds(·), the wage rate, Ws, and the commercial rent, Rs.

There is a set of firms, j ∈ J . Each firm produces a unique variety. A firm is characterized by its

productivity, qj . It chooses a finite set of locations Oj ⊂ S where to set up plants. Conditional on

operating a plant at location o, production requires only local labor which is employed at wage Wo. A

plant’s productivity is the product of a local component, Bo, and a firm component, Z (qj , Nj). The firm

component is increasing in a standard idiosyncratic productivity level qj , and decreasing in the firm’s total

number of plants Nj = |Oj |. The latter captures the productivity cost of increasing the firm’s span of

control. We also assume that Z(q, 0) <∞. In sum, if a firm operates a total of Nj plants, its productivity

4These problems have been shown to be NP hard in both one or two dimensions (Fowler et al. (1981)). It has been shown
that, unless P = NP , there is a bound on the performance of such algorithms: they cannot guarantee a solution that is
better than 1.463 times the actual minimal cost (Guha and Khuller (1999) and Sviridenko (2002)). Algorithms that deliver
performance close to this bound have been recently proposed by Byrka and Aardal (2010) and Li (2013).

5Empirically, assessing sorting patterns when each plant is a stand-alone unit is difficult because of the reflection problem.
In particular, one can observe whether plants in more dense locations are larger, but it is not clear whether that is due to
sorting or to the impact of being in a dense location. In our setting, with firms that operate many units in different locations,
we can exploit leave-out strategies to argue that there is clear evidence of positive assortative matching.

6Our results can be easily generalized to a Euclidean space S that is closed, bounded, and Jordan measurable. While it
seems intuitive that our results could be extended beyond two-dimensional space, doing so would require a resolution of the
Gersho conjecture (Gersho (1979)), which remains open for three or more dimensions.
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in location o ∈ Oj is BoZ (qj , Nj). Each plant takes up ξ units of commercial real estate with rental cost Rs

per unit of space. Trade between any two locations incurs an iceberg shipping cost. For one unit of a good

to arrive at distance δ, T (δ) ≥ 1 units must be shipped. We normalize T (0) = 1 and assume that T (δ) is

strictly increasing, satisfies the triangle inequality, and diverges as δ →∞.

We posit a market structure in which firms transport goods to households and choose a separate price

for its good at each destination.7 Firms will serve customers in the least costly possible way. Thus, the cost

of delivering one unit of good j from a plant in o to a consumer in s is WoT (δso)
BoZ(qj ,Nj)

where δso denotes distance

between s and o. Let Λjs(Oj) ≡ mino∈Oj
WoT (δso)
BoZ(qj ,Nj)

be j’s minimal cost of delivering one unit of good j to a

consumer in location s. Let pjs be the price charged by j to consumers in s. Then, if Ds(pjs) is the residual

demand for variety j in location s, the optimal price maximizes

max
pjs

Ds(pjs) (pjs − Λjs) .

The problem above can lead to pricing rules where markups depend on local characteristics. To simplify

the problem, we abstract from spatial variation in markups and assume the following about the residual

demand function.

Assumption 1 Residual demand satisfies Ds(pjs) = Dsp
−ε
js , where Ds subsumes all determinants of local

demand, including the local price index.

Assumption 1 is satisfied in the standard case with monopolistic competition and CES preferences with

elasticity of substitution across varieties given by ε. Then, as usual, pjs = ε
ε−1Λjs.

Firm j’s profit can be expressed as

πj = max
Oj


∫
s

max
pjs

Dsp
−ε
js (pjs − Λjs (Oj)) ds−

∑
o∈Oj

Roξ

 , (1)

or, using the expression for j’s price, is

πj = max
Oj

Z (qj , Nj)
ε−1
∫
s
Ds max

o∈Oj

{
boT (δso)

1−ε
}
ds−

∑
o∈Oj

Roξ

 . (2)

where bo ≡ (ε−1)ε−1

εε (Bo/Wo)
ε−1 summarizes local productivity and wages.

7An alternative market structure—one in which households incur shipping costs and choose which plant to purchase from,
and each firm chooses a separate price at each of its plants—is equally natural. If households have isoelastic residual demand, as
we assume below, the two market structures yield the same revenue and employment for each plant and the same consumption
and expenditures for each consumer. We focus on the market structure in which firms incur shipping costs because it is simpler
to state and work with.
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2.1 The Catchment Area of a Plant

The catchment area of a plant in location o is formed by locations s to which the firm sells goods from the

plant in o. Formally, let CT (o) denote the catchment area of a plant in location o,

CT (o) =

{
s ∈ S for which o = arg max

õ∈Oj

{
bõT (δsõ)

1−ε
}}

. (3)

CT (o) can be empty if a plant’s cost, relative to other nearby plants, is high enough.

Note that, once plants are placed in locations Oj , the catchment area of each plant only depends on

transportation costs and on the production cost of locations where plants are placed. When space is one

dimensional, d = 1, and transport costs rise sufficiently fast with distance, catchment areas are simply

a set of non-overlapping intervals covering S, such that the cost of servicing costumers at the boundary

is identical for both adjacent plants. Therefore, the size of the catchment area of a particular plant is

decreasing in the plant’s cost and increasing in the cost of adjacent plants. When transport costs do not rise

fast with distance, the catchment area of a plant can be the union of disjoint segments. With 2-dimensional

space, catchment areas can be substantially more complicated. In any of these cases, it is straightforward,

although computationally costly, to solve numerically for catchment areas.8 Nevertheless, we show that when

we incorporate the decision of where to place plants, the optimal choice leads to a structure of catchment

areas that greatly simplifies the problem. In particular, in the limiting case that we study, local catchment

areas are always characterized by intervals (d = 1) or hexagons (d = 2).

2.1.1 Examples in one and two dimensions

This section illustrates the role of the production cost in determining catchment areas. We first focus on

the simpler case of d = 1 with S = [0, 1], so that catchment areas partition the unit interval. We show that

non-convex catchment areas can arise when transport costs do not rise quickly with distance. We then turn

to an environment with two dimensions where S is the unit square. We show examples of how changes in

fundamentals across locations affect catchment areas. For each exercise, we set ε = 2 and solve two cases

with different distributions for bo across space.9

Figure 3 presents the one-dimensional case. We consider the problem of a firm that (perhaps sub-

optimally) places five plants at regular intervals across space.10 We assume transport costs are given by

T (δso) = 1 + 0.75δso, where δso is the Euclidean distance between s and o. The left panel presents the re-

sulting catchment areas when production costs are the same across all locations, i.e. bo = 1 ∀ o ∈ Oj , while

the right panel shows the resulting catchment areas when the third location is 14.5% more productive than

8This problem is equivalent to constructing a weighted Voronoi diagram. Tintelnot (2016) approaches this problem by
assuming that plants sell a continuum of goods produced with productivities drawn from a distribution with infinite support.
The implication is that the catchment areas of all plants overlap and cover the whole space.

9The choice ε = 2 is not essential to generate these examples.
10Plants locations are o ∈ {1/10, 3/10, 5/10, 7/10, 9/10}.
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in the left panel. In both cases, catchment areas are characterized by a collection of segments. When all

plants face the same cost, catchment areas are equally sized line segments. When one plant, in this example

Plant 3, faces a lower cost, catchment areas vary in size and need not be convex. More productive locations

have larger catchment areas, as evidenced by the spatial expansion of Plant 3’s catchment area. Notice that

Plant 3’s catchment area depends on its own cost, its location, and the cost of its neighbors—Plants 2 and

4, as well as the location and cost of its neighbors’ neighbors—Plants 1 and 5. In other words, designing

the catchment area of plant 3 requires understanding this plant’s interactions with all other plants.11 Note

also that the non-convexity in the catchment area of Plant 3 is possible because transport costs do not rise

grow quickly with distance.

Figure 3: Catchment Areas in One Dimension

bo = 1, ∀ o bo varies with o

1

(1)

2

(1)

3

(1)

4

(1)

5

(1)

1

(1)

3 2

(1)

3

(1.145)

4

(1)

3 5

(1)

Notes: The figure presents the catchment areas, as defined in (3), for the one-dimensional case where 5 plants are located in a line.
The left plot presents the case where all locations are equally productive, while the right plot presents a case where plant 3’s location is
more productive. Each dot in each plot corresponds to the location of a plant. Each number in parenthesis under each dot corresponds
to the value for bo for that dot. The number above each brace indicates which plant serves that location, i.e. the catchment area of a
particular plant.

Similar logic applies for the two-dimensional case. Figure 4 presents catchment areas when nine plants are

arbitrarily placed in a regular grid.12 For these exercises we set transportation costs equal to T (δso) = 1+δso.

As in the one-dimensional case, we assume that there is no variation in economic fundamentals, so bo = 1 ∀
o ∈ Oj , in the left panel. The right panel presents the results when we increase the costs of the location in

the upper left corner by setting productivity to bo = 0.85, and we reduce the costs of the central and lower

right corner locations by letting bo = 1.2.

As Figure 4 shows, when production costs are constant across production locations, catchment areas are

all equally sized, are all convex, and are all polygons. However, when production costs vary, the catchment

areas can take different shapes and sizes, can be non-convex, and are not polygons.

While the one-dimensional case is simpler in the sense that catchment areas are, at most, a combination

of disjoint intervals, both the one-dimension and two-dimension cases share the same basic features and

11One can show that if production costs are similar across space and if trade costs rise sufficiently fast with distance, a plant’s
catchment area depends only on its cost and that of its direct neighbors.

12In the figure, plants are located at (1/6, 1/6), (1/6, 1/2), (1/6, 5/6), (1/2, 1/6), (1/2, 1/2), (1/2, 5/6), (5/6, 1/6), (5/6, 1/2), (5/6, 5/6) .
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Figure 4: Catchment Areas in Two Dimensions

bo = 1, ∀ o bo varies with o

Notes: The figure present the catchment areas, as defined in (3), for the case where 9 plants are located in the squared space. Each
dot in each plot corresponds to the location of a plant. Each number on parenthesis next to each dot corresponds to the value for bo
for that dot.

complexities: local characteristics affect the size of catchment areas, and non-convex catchment areas can

arise as a combination of transport cost varying slowly with distance and specifics about the productivity

of a location, the productivity and location of its neighbors, the productivity and location of the neighbors’

neighbors, and so on.

The difficulty of these problems may seem daunting, particularly once we introduce more locations,

richer heterogeneity, and especially when we incorporate the outer problem of how many plants to use and

where to place them. Perhaps surprisingly, in the limit economy we study below, solving this outer problem

of optimal plant locations imposes structure that leads to a simple characterization of the inner problem of

solving for catchment areas in both one and two dimensions. The only case where we can characterize the

solution to the full problem without relying on the limit economy is the one-dimensional case with uniform

locations. We turn to that problem first.

2.2 A Simple Special Case in One Dimension

We now turn to the outer maximization problem of determining how many and where to set up plants. We

start by considering one special case for which the solution to this outer problem is straightforward. If space

is one-dimensional and economic activity is uniform across locations, the optimal configuration is to have

plants equally spaced so that catchment areas are equal in length. In this case, the firm’s profit function

can be expressed as

πj = sup
N
xZ (qj , N)ε−1NG (1/N)−RN
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Figure 5: A One Dimensional Representation of the Efficiency of Distribution, κ(N) ≡ NG(1/N)

G
(

1
N

)
T (δ)1−ε

1

1

0

1
N

where x ≡ (ε−1)ε−1

εε D (B/W )ε−1 and G(u) =
∫ u/2
−u/2 T (|δ|)1−εdδ. The variable x combines the demand, D,

facing the plant at each location with the cost of effective labor, W/B, into a measure of local profitability.

G(u) is the integral of the function T (·)1−ε over all distances between the origin and points of a line segment

of length u centered at the origin.

We refer to the function κ(N) ≡ NG(1/N) as the efficiency of distribution. It represents the fraction of

the value of sales a firm retains after subtracting the cost of optimally transporting the goods to consumers

from its N plants. Figure 5 provides a graphical representation of the function G(·) and the implied function

κ(·). The figure presents an example with four plants, N = 4, with catchment areas of length 1/N . It plots

the function T (δ)1−ε, where δ is the distance from the plant to the customer’s location. For customers at

the plant’s location, δ = 0, there is no loss from transport costs. For customers further away, profits are

reduced by a factor of T (δ)1−ε. The shaded area is G (1/N), the fraction of profit the firm gets from a

plant’s catchment area relative to a world with no transport costs. κ(N) = NG (1/N), the efficiency of

distribution, is the fraction of profit the firm gets per unit of space, relative to a world with no transport

costs.

In two dimensions, there is no closed-form solution for the exact placement of plants, even when economic

activity is uniform across space. Nevertheless, there is a known upper bound for the profit a firm can attain,

also based on the strategy of placing plants in a regular pattern across space. We discuss this strategy

further in Section 2.4.

As discussed above, we aim to venture beyond these special cases in which economic activity is uniform,

so that we can discuss how a firm’s local footprint varies with local economic conditions, or how firms sort

across space. Thus, we now propose a reformulation of this problem that can be tractably studied, while

still preserving its main features and trade-offs.
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2.3 A Tractable Limit

We propose a tractable limit of the firm’s problem in which the number of plants per firm grows large so that

the firm is essentially choosing a density of plants, rather than a discrete number. In particular, we study a

limit in which the space that plants take up grows small, trade costs grow large, and the productivity cost

for having many plants grows small. We take limits at carefully chosen rates so the problem is well-behaved

in the limit. Specifically, for some ∆ > 0 let

ξ∆ = ∆d,

T∆(δ) = t

(
δ

∆

)
, and

Z∆ (q,N) = z
(
q,∆dN

)
.

for d = 1, 2. We study the limit as ∆→ 0.

We want to study a limit in which the key trade-offs between the fixed and managerial span-of-control

costs of setting up plants and the cost of reaching consumers remain relevant; a limit in which plants continue

to potentially cannibalize each other’s customers. Thus, as ∆ declines and the cost of adding plants falls, we

increase transport costs. In two-dimensional space, d = 2, ξ∆ and Z∆ depend on the square of ∆ since space

is two-dimensional while, in contrast, transport costs are a function of distance which is one dimensional.13

The following proposition describes the profits of the firm in this limit.

Proposition 1 Suppose Rs, Ds, and Bs/Ws are continuous functions of s. Then, in the limit as ∆ → 0,

the profits of firm j satisfy

πj = sup
n:S→R+

∫
s

[
xsz

(
qj ,

∫
ns̃ds̃

)ε−1

nsg (1/ns)−Rsns

]
ds

where xs ≡ (ε−1)ε−1

εε Ds (Bs/Ws)
ε−1. In one dimension, g(u) is the integral of the function t (·)1−ε over

all distances between the origin and points of a line segment of length u centered at the origin. In two

dimensions, g(u) is the integral of the function t (·)1−ε over all distances between the origin and points of a

regular hexagon of area u centered at the origin.14

13There is a natural analogy to the continuous time limit of discrete-time portfolio choice problems. In those models, as the
length of a period shrinks to zero, the amount of risk must grow without bound so that there is a meaningful amount of risk
to compare across assets. The key, as in our setup, is that the speed at which risk grows is the same as the speed at which the
period shrinks. Thus, the relative importance of risk per period unit remains constant. In the appropriate limit, the value of
assets follows a Brownian motion.

14In one dimension, g(u) =
∫ u/2
−u/2 t(|δ|)

1−εdδ. In two dimensions, g(u) =
∫√3−3/22u

0
t(δ)1−ε2πδ$

(
δ√

3−3/22u

)
dδ where $(r)

is the fraction of circle with radius r that intersects with the interior a regular hexagon with side length 1. As we show in

Appendix A.1.2, simple trigonometric arguments yield $(δ) =

{
1 0 ≤ δ ≤

√
3/2

1− 6
π

cos−1
(√

3/2
δ

) √
3/2 ≤ δ ≤ 1

.
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Proposition 1 shows that in the limit, the firm’s problem is one of calculus of variations which, as we

show below, is much easier to analyze. As before, the variable xs combines both local demand facing the

plant, Ds, and local cost of effective labor, Ws/Bs, into a measure of local profitability. Hence, in the limit, a

location’s characteristics can be fully summarized by two variables, local rent, Rs, and local profitability, xs.

In contrast, before taking the limit, the relevant features of a location were infinite dimensional, comprised

of the local effective wage and demand in surrounding locations. Note also that, in the limit, aside from

the span-of-control considerations, the problem is completely separable across locations. An important

implication of this last result is that the problems in one- and two dimensions end up being incredibly

similar. The only difference is that when solving the problem in one dimension the function g(u) requires

integrating over a line segment, while in two dimensions it requires integrating over a hexagon.

Before presenting a sketch of the proof of Proposition 1, we go back to the simpler case where all locations

are identical that we analyzed in Section 2.2 for one-dimensional space. We then proceed to sketch the proof

of Proposition 1 and characterize the solution to the profit maximization problem. Most formal proofs are

relegated to the Appendix unless explicitly stated.

2.4 Uniform Space

We begin by discussing the simpler case where all economic activity is uniform across locations. We an-

alyzed the one-dimensional version of this problem in Section 2.2. Here we also discuss the case of two

dimensions where there is no closed-form solution for the placement of plants. As before, assume the local

demand shifter for all locations is D, effective productivity is b, and commercial land rents are R. When

space is homogeneous, there are some known results to the solution to the firm problem of choosing where

to locate its plants. In particular, if a firm places N plants, the firm’s payoff will be no higher than

xz(qj , N)ε−1NG (|S|/N) − RN where |S| is the length of S in one dimension, and the area of S in two

dimensions and, as stated in Proposition 1, x ≡ Db and G(u) is the integral of the transportation cost

T (·)1−ε over either a line segment of length u or a regular hexagon with area u centered at the origin, in

each respective case. For the one-dimensional case, the optimality of catchment areas that are congruent

line segments is trivial, as shown in the left panel of Figure 6: given all the symmetry built into the model,

it is straightforward to set the catchment area of each plant to be |S|/N , with plants placed at the center of

each catchment area. In this case, as we argued in Section 2.2, xz(qj , N)ε−1NG (|S|/N) − RN is not only

an upper bound but it is equal to the maximum firm’s payoff when placing N plants in a one-dimensional

uniform space.

When space is two-dimensional, the result follows from the Sum of Moments theorem in Fejes Toth

(1953), one of the landmark results in discrete geometry.15 That is, the nearly optimal policy is to have

uniform catchment areas in the form of hexagons, with plants at the center of each hexagon. The right

panel of Figure 6 shows an example of this solution. Why are hexagonal catchment areas optimal in two-

15While the appearance of hexagons as a result of the optimal configuration of economic activity in space is sometimes
associated with Christaller (1933), the formal statement and proof are due to Fejes Toth (1953).
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Figure 6: Filling Out Space

|S|
N

Notes: The left panel in the figure shows a line of length S divided by N = 4 line segments of length S/N . The right panel shows a square
of area |S| divided by N hexagons of area |S|/N .

dimensional space? Jensen’s inequality implies that it is optimal to have catchment areas of roughly the

same area. Furthermore, optimality dictates that the shape of each catchment area should minimize the

average distance from the center to the points in the catchment area. Among all shapes, a circle minimizes

this average distance. However, one cannot form a tessellation with circles as they would either overlap or

leave empty spots. Among all polygons with which one can construct a uniform tessellation, the hexagon

is closest to a circle. Note that this is an upper bound. As the right panel in Figure 6 shows, N disjoint

uniform hexagons of size |S|/N generically do not fit exactly in the space S.16 It is straightforward to show

that if N is large, i.e., if |S| is large relative to the size of the catchment areas, then the boundary issue is

quantitatively less relevant. In the “appropriate” limit, the upper bound is attained.

2.5 Heterogeneous Space

We are interested in understanding the location of a firm’s plants in heterogeneous space. Section 2.4

provided important tools that we take advantage of for the general case with spatial heterogeneity. For the

homogeneous space case, we know how to construct the solution to the firm’s problem for the d = 1 case

for any number of plants N , and for the d = 2 case we know how to do it when the number of plants is

“large”. Interestingly, the limit that we explore allows us to apply both results. For the heterogeneous space

case, Proposition 1 provides our key result. The proposition establishes that we can use a “large N” limit

to obtain a simple characterization of the firm’s optimization problem when space is heterogeneous. The

key insight is that when economic activity is continuous over space, it is locally uniform. As a result, in the

limiting economy, the solution for homogeneous space applies locally. The proposition states that, in the

16Bollobas (1973) showed that the upper bound can be attained only if S is the union of N disjoint regular hexagons.

15



limit, the optimal policy is to place plants so that local catchment areas are uniform, infinitesimal, intervals

in one-dimensional space and hexagons in two-dimensional space. The variable ns is the measure of plants

in the neighborhood of s, so that 1/ns is a measure of the size of the catchment areas.

Section 2.4 showed that, when economic activity is uniform, the solution for one-dimensional space is

simpler than with two dimensions. When economic activity is heterogeneous across space, the problem is

considerably more complex for either one or two dimensions, as discussed in Section 2.1.1. The local logic

that we exploit in this paper allows us to make substantive progress in both one- and two-dimensional

problems with spatial heterogeneity: Once we know the solution for homogeneous space for the “large N”

limit, which we have from Fejes Toth (1953), working with two-dimensional space is no more difficult than

working in one dimension. For readability, we describe the proof when space is two-dimensional.

2.5.1 A Sketch of the Proof of Proposition 1

In economy ∆, firm j’s profit is given by

π∆
j = max

Oj

Z∆ (qj , Nj)
ε−1
∫
s
Ds max

o∈Oj

{
boT

∆ (δso)
1−ε
}
ds−

∑
o∈Oj

Roξ
∆

 .

The strategy is to create upper and lower bounds for firm j’s profit. We start by dividing the space S
into congruent squares with side length k, indexed by i ∈ Ik, denoted by Ski (for any k such that 1/k is an

integer). For each ∆, k, we construct upper bound and lower bounds on firm j’s profit, π̄k∆
j and πk∆

j , such

that

πk∆
j ≤ π∆

j ≤ π̄k∆
j .

To construct the upper bound, we begin by considering a best-case scenario for each square by supposing that

each square’s highest demand, highest effective productivity, and lowest rent apply everywhere in the square.

That is, for location s in square Ski , we replace Ds, bs, and Rs with D̄k
s ≡ sups̃∈Ski

Ds̃, b̄
k
s ≡ sups̃∈Ski

bs̃,

Rks ≡ inf s̃∈Ski
Rs̃. Similarly, to construct the lower bound, we consider a worst-case scenario for each

square by supposing that each square’s lowest demand, lowest effective productivity, and highest rent apply

everywhere in the square.

In Appendix G we explore an example where we solve numerically for the upper and lower bounds π̄k∆
j

and πk∆
j . Intuitively, the example shows that the bounds get much tighter for small ∆’s, when the chosen

number of local plants is large.

We next use the Sum of Moments theorem separately for each square to give an upper bound on the

profit the firm could attain from that square in that best-case scenario. As described in Figure 6, if the

firm chooses to place Ni plants in square Ski , the upper bound corresponds to assigning to each of those

plants a catchment area that is a regular hexagon with area k×k
Ni

.17 To construct a lower bound for the

17In constructing this upper bound, we compute, separately for each square Ski , the profits the firm would earn from the plants
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worst-case scenario, we impose an ad hoc restriction on the firm’s strategies so that all plants within Ski
have catchment areas that are regular hexagons of the same size and that are fully contained in the square

Ski ; since regular hexagons do not form a tesselation of a square, not all customers in Ski are served by the

firm in this suboptimal policy.

The second step is to fix an arbitrary k and study the limit as ∆ → 0. Define the function κ(ns) ≡
nsg(1/ns). We prove that

lim
∆→0

π̄k∆
j ≤ π̄kj ≡ sup

{ns≥0}

∫ {
D̄k
s b̄
k
sz

(
qj ,

∫
ns̃ds̃

)ε−1

κ (ns)− nsRks

}
ds,

and

lim
∆→0

πk∆
j ≥ πkj ≡ sup

{ns≥0}

∫
s

{
Dk
sb
k
sz

(
qj ,

∫
ns̃ds̃

)ε−1

κ (ns)− nsR̄ks

}
ds.

If we define πj ≡ lim∆→0 π
∆
j to be the firm’s profit in the limiting economy, these together with πk∆

j ≤
π∆
j ≤ π̄k∆

j imply that

πkj ≤ πj ≤ π̄kj .

We obtain these results because, for any k, the economic features are uniform within each square Ski in both

the best and worst case scenarios, so we can use results from discrete geometry to derive relatively simple

expressions for the bounds. For the upper bound, the results imply that the catchment areas within each

square Ski form a mesh with uniform regular hexagons. For the lower bound, the ad hoc restriction imposes

that the catchment areas form a mesh with uniform regular hexagons.

The final step is to show that

lim
k→0

π̄kj = lim
k→0

πkj = sup
ns≥0

∫
s

{
Dsbsz

(
qj ,

∫
ns̃ds̃

)ε−1

κ (ns)−Rsns

}
ds,

i.e., that the limit can be interchanged with the supremum. Since xs = Dsbs, this proves Proposition 1.

The rest of the technical details of the proof are relegated to the Appendix.

2.6 Convergence of the Policy Function

Proposition 1 established that the firm’s profit function converges to a well-behaved limit. Here we establish

further that the policy function, the choice of the measure of plants by location, converges as well.

Proposition 2 Suppose that the problem in the limiting economy has a unique solution, n∗. For each ∆,

let O∆∗ be a solution to the problem in economy ∆. Then for any ε, there is a ∆̄ small enough so that for

in that square if it had no other plants in all of S. We then add together the profits for all k× k squares. This double-counting
of customers is fine because we are constructing an upper bound for profits, not the value of profit for any feasible policy. In
any case, as ∆→ 0, sales outside a plant’s k × k square go to zero.
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any ∆ < ∆̄ and any Jordan-measurable set A ⊆ S,∣∣∣∣∆d
∣∣O∆∗ ∩ A

∣∣− ∫
s∈A

n∗sds

∣∣∣∣ < ε

The proposition describes the precise sense in which the policy function converges. Consider any Jordan-

measurable set of locations, A.18 As ∆→ 0, the number of plants a firm places in a set of locations naturally

rises, as rental costs fall and trade costs rise. Nevertheless, appropriately scaled by ∆d, the number of plants

placed in the set converges to a well-behaved limit that corresponds to the solution in the limit economy.19

Hence, the proposition suggests a natural way to approach data on plant locations. Namely, rather than

asking whether a firm placed a plant in a particular location, the proposition suggests looking at the number

of plants a firm places in a contiguous area (e.g., a 12× 12 mile square).

2.6.1 A Sketch of the Proof of Proposition 2

We show uniform convergence of the policy function in two steps. First, we derive properties of a firm’s

limiting problem. We show that if the limiting problem has a unique solution, n∗, then for any ε > 0 there

exists an η > 0 such that n ∈ N̄ and |Π(n)−Π(n∗)| < η imply
∫
s∈S |ns − n

∗
s| ds < ε, where N̄ is a space of

functions with a uniform bound and Π(n) is the profit the firm would obtain from following strategy n.

In the second step, we study the sequence of economies as ∆→ 0. As in the proof of convergence of the

value function in Appendix A.2, we construct a sequence of bounds on the profit function that get tighter as

∆→ 0. We show that for economy ∆, the optimal choice O∆∗ has a corresponding strategy in the limiting

economy, n∆∗. As ∆→ 0, the bounds get tighter and two things happen. First, O∆∗ gets close to n∆∗: over

any Jordan measurable set A, ∆d
∣∣O∆∗ ∩ A

∣∣ uniformly approaches
∫
s∈A n

∆∗
s ds. Second, the corresponding

strategy n∆∗ delivers a value in the limit economy close to optimum. This, along with the first step, implies

that n∆∗ converges to n∗. Namely, we have uniform convergence of the policy function to n∗.

In constructing the strategy n∆∗, we use segments of length k or k × k squares to find upper and lower

bounds, as in the proof of Proposition 1. In particular, for any ∆ and k we can construct a strategy in

the limiting economy that maximizes profit subject to the restriction that the measure of plants on each

segment/square corresponds to the number of plants of O∆∗ in the segment/square multiplied by∆d. In the

18Jordan-measurable sets are, loosely, those that are well-approximated by finite unions of rectangles. These include all
bounded convex sets, but not all Lebesgue-measurable sets. A set is Jordan-measurable if and only if its indicator function is
Riemann integrable. Why is the theorem restricted to Jordan-measurable sets? The set O∆∗ is finite for any ∆ > 0 and thus
always has Lebesgue measure zero. It is hard to rule out the possibility that a single set A with Lebesgue measure zero (e.g.,
points in the unit square with rational coordinates) contains O∆∗ for all ∆, in which case the Lebesgue integral

∫
s∈A n

∗
sds would

equal zero.
19We do not know if there is a unique optimal policy function for economy ∆ (and we have no way of checking). However, the

theorem applies to any optimal policy functions O∆∗. It is easier to assess uniqueness for the limiting economy. We can divide
the problem of the limiting economy into a one-dimensional problem of choosing the total measure of plants, and a sub-problem
of choosing a spatial allocation of those plants. It is straightforward to show that conditional on N , there is a unique solution
to the sub-problem of placing the plants in space (up to sets of measure zero). We do not provide sufficient conditions to ensure
uniqueness of the outer problem, but the fact that it is one-dimensional means that it is easy to verify uniqueness numerically.
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proof of Proposition 1, the key step was to take the limit as ∆→ 0 for a given k and then take k → 0. Here,

the key trick is to choose a sequence of k = K(∆) so that, as we take the limit as ∆ → 0, the sequence

k = K (∆) also converges to zero (albeit more slowly than does ∆). As such, for each ∆, we construct

the strategy n∆∗ in the limit economy that maximizes profits subject to the restriction that the measure of

plants on each K(∆) segment, or K(∆)×K(∆) square, corresponds to the number of plants of O∆∗ in the

segment/square multiplied by ∆d.

2.7 The Local Efficiency of Distribution and its Properties

As we discussed before, we refer to the function κ(ns) ≡ nsg(1/ns) as the local efficiency of distribution in

the neighborhood of s. Recall that κ(ns) represents the fraction of the value of local sales a firm retains after

subtracting the cost of optimally transporting the goods to consumers from its ns plants. The following

lemma describes some useful properties of κ.20

Lemma 3 κ(n) ≡ ng
(

1
n

)
is strictly increasing and strictly concave, and satisfies the following properties:

1. κ(0) = 0;

2. limn→∞ κ(n) = 1;

3. 1− κ(n) ∼
n→∞

n−1/d

If transport costs satisfy limδ→∞ δ
− 2d
ε−1 t(δ) =∞ then

4. κ′′(0) = 0;

5. κ′(0) <∞.

The first property says that with no plants revenues are zero. κ(n) is increasing since more plants imply

that customers are on average closer to a plant. It is concave since additional plants cannibalize existing

plants leading to diminishing gains from reducing transport costs. The second property states that as n

grows infinitely large, catchment areas grow small and κ(n) approaches an upper bound of 1; in the limit,

additional plants provide no significant gains, and the economy becomes “saturated”. The third property

states that κ(n) follows an asymptotic power law as n grows large. If, asymptotically, trade costs increase

sufficiently fast with distance, we can provide a sharper characterization of the efficiency of distribution

when n is small. The fourth property states that when the number of plants is small, local profits increase

linearly in the number of plants. Put together, cannibalization is irrelevant for the first set of plants but

20When space is one dimensional, we can prove a converse of Lemma 3. If κ is twice continuously differentiable, strictly
increasing, strictly concave, and satisfies κ(0) = 0, κ′(0) ∈ (0,∞), κ′′(0) = 0, limn→∞ n[1 − κ(n)] ∈ (0,∞), then there is a

strictly increasing transport cost t(δ) that generates κ, namely t(δ) =
[
1 +

∫∞
1
2δ
κ′′(x)xdx

] 1
1−ε

. For example, κ(n) = tan−1(φn)
π/2

for some constant φ > 0 is consistent with the trade cost t(δ) =
{

1
π/2

[
tan−1

(
1

2δφ

)
− 1

2δφ+(2δφ)−1

]} 1
1−ε

.
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becomes the dominant force when the number of plants grows large. Finally, the fifth property, says that

there is no Inada condition at n = 0. Hence, there can be locations s in which the firm places no plants,

ns = 0.21

2.8 The Assignment of Plants to Locations

Proposition 1 can be used to characterize how firms place their plants. As before, we assume that the firm

takes as given the distribution of commercial rents, Rs, and the distribution of local profitability, xs. The

problem of choosing how many plants to have, Nj , and their distribution in space, nj : S → R+, can be

stated as

sup
Nj ,nj :S→R+

∫
s

[
xsz(qj , Nj)

ε−1κ(njs)−Rsnjs
]
ds,

subject to ∫
s
njsds ≤ Nj .

Letting λj be the multiplier on the constraint, the first order condition with respect to njs is given by

xsz
ε−1
j κ′(njs) ≤ Rs + λj , with equality if njs > 0, (4)

where we use zj as shorthand for z(qj , Nj). The first order condition with respect to Nj is

λj = −d[z(qj , Nj)
ε−1]

dNj

∫
s
xsκ(njs)ds. (5)

The productivity of the firm declines with its span of control, as measured by the total number of plants, Nj .

Hence, λj can be interpreted as the marginal span-of-control cost for the firm. It amounts to an additional

shadow fixed cost, on top of the explicit fixed cost Rs, of operating one more plant in location s.

Since κ is strictly concave, (4) implies that njs is increasing in xs and zj , and decreasing in Rs and

λj . Rs + λj comprise a plant’s effective fixed cost. Naturally, higher effective fixed costs induce the firm

to operate fewer plants in a location. The firm trades off this effective fixed cost against the gains from

increasing the efficiency of distribution: more plants implies that, on average, customers will be closer to

the plants. Larger xs or zj imply larger gains from a reduction in average distance, inducing the firm to

operate more plants in the location.

To characterize the solution to this problem it is useful to make the following assumption on the pro-

ductivity function z(q,N).

Assumption 2 z(q,N) = qΞ(N), where Ξ is a log-concave function.

Using the first order conditions in (4), together with this assumption, we can show that firms with higher

21In one dimension,d = 1, κ′(0) = 2
∫∞

0
t(δ)1−εdδ <∞. In two dimensions, d = 2, κ′(0) =

∫∞
0
t(δ)1−ε2πδdδ <∞.
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endogenous productivity have higher marginal span-of-control cost of increasing the number of plants, λj ,

even relative to their firm-specific profitability, zε−1
j .22

Lemma 4 Consider two firms with z1 < z2. Then, either λ1

zε−1
1

< λ2

zε−1
2

or N1 = N2 = 0.

Proof. Since κ is concave, the density of plants is a decreasing function of
Rs+λj
xsz

ε−1
j

. Suppose that λ1

zε−1
1

≥ λ2

zε−1
2

.

Then, in every market Rs+λ1

xsz
ε−1
1

> Rs+λ2

xsz
ε−1
2

. Therefore n1s ≤ n2s with a strict inequality whenever n2s > 0. If

N2 > 0, then N2 > N1, and the log-concavity of z with respect to N along with κ′ > 0 implies λ1

zε−1
1

=

(ε − 1)−zN (q1,N1)
z(q1,N1)

∫
s xsκ(n1s)ds < (ε − 1)−zN (q2,N2)

z(q2,N2)

∫
s xsκ (n2s) ds = λ2

zε−1
2

, a contradiction. If N2 = 0, then

N1 = 0.

Our next result uses the previous Lemma to prove that more productive firms set up relatively more

plants in locations with higher rents.

Proposition 5 Consider two firms with z1 < z2. Let R∗(z1, z2) be the unique rent that satisfies

R∗(z1, z2) + λ2

R∗(z1, z2) + λ1
=
zε−1

2

zε−1
1

.

Then, Rs > R∗(z1, z2) implies that n2s ≥ n1s, with strict inequality if n2s > 0; Rs < R∗ (z1, z2) implies that

n1s ≥ n2s, with strict inequality if n1s > 0; and Rs = R∗ (z1, z2) implies that n1s = n2s.

Proof. z2 > z1 implies that λ2 > λ1 and λ2

zε−1
2

> λ1

zε−1
1

. Therefore R+λ2
R+λ1

> 1, so
zε−1
1

zε−1
2

R+λ2
R+λ1

is strictly

decreasing in R. Since limR→0
zε−1
1

zε−1
2

R+λ2
R+λ1

=
λ2/z

ε−1
2

λ1/z
ε−1
1

> 1 and limR→∞
zε−1
1

zε−1
2

R+λ2
R+λ1

=
zε−1
1

zε−1
2

< 1, there is a unique

R∗ such that
zε−1
1

zε−1
2

R+λ2
R+λ1

= 1. If Rs > R∗ (z1, z2) and n2s, n1s > 0 then κ′ (n2s) = Rs+λ2

zε−1
2 xs

< Rs+λ1

zε−1
1 xs

= κ′ (n1s)

and since κ′ is decreasing, n2s > n1s. If n2s > 0 and n1s = 0, then of course n2s > n1s. If n2s = 0, then

κ′(0) ≤ Rs+λ2

zε−1
2 xs

< Rs+λ1

zε−1
1 xs

, which implies that it is optimal for n1s = 0. The argument for Rs < R∗ (z1, z2) is

identical. The argument for R = R∗ (z1, z2) is trivial.

Proposition 5 states that for two firms with different productivities, there is a cutoff level of rent such

that the firm with higher productivity places more plants in locations with higher rent and the firm with

lower productivity places more plants in locations with lower rent. Thus, even while the two firms have

overlapping footprints, there is a clear pattern of sorting. Figure 7 provides a graphical representation of

this result.

The type of sorting implied by Proposition 5 stands in sharp contrast to workhorse models of trade and

multinational production in which the more marginal locations are reached by the most productive firms.23

Here, it is the less productive firms that go to the lower rent locations. Why the difference?

22Log concavity ensures that −zN (q,N)
z(q,N)

is non-decreasing.
23See for example Melitz (2003), Eaton and Kortum (2002), and Ramondo and Rodŕıguez-Clare (2013).
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Figure 7: Location of Plants of a High and a Low Productivity Firm

R*

Low productivity firm

High productivity firm

R

Measure of plants

Consider first locations with the cutoff level of rent where two firms with different productivities choose to

place the same number of plants. Firms balance the marginal profit from an additional plant, xsz
ε−1
j κ′(njs),

against the effective fixed cost of a new plant, Rs+λj , which depends on the local rent and the productivity

penalty arising from the larger span-of-control of managers. The higher-productivity firm earns more profit

per plant in the location, but chooses not to open more plants because of its higher marginal span-of-control

costs (as shown in Lemma 4). At locations with higher rent, the higher rent deters the lower-productivity firm

from placing many plants, but it has a smaller impact on the higher-productivity firm’s effective fixed costs.

Hence, the higher-productivity firm places relatively more plants in these high-rent locations. Formally, since
d ln(Rs+λj)
d lnRs

is decreasing in λj , the effective fixed cost of setting up a plant rises proportionally less with rents

for the high productivity firm. A parallel argument implies that a lower rent induces the lower-productivity

firm to place more plants, while the large marginal span-of-control cost of the high-productivity firm limits

its presence.24 Most models of plant location decisions in the literature do not feature span-of-control costs,

and so this sorting implication is absent.25

The results above condition on firms with a positive density of plants in particular locations. Our next

result shows that, for any given location, there is a productivity threshold such that firms with productivity

below the threshold do not set up plants in that location. Under further restrictions on the span-of-control

24In the baseline model, a plant requires a fixed amount of space, and production uses only labor. Thus, a plant’s fixed cost
depends on the local rent and its variable cost depends on the local wage. If both a plant’s fixed cost and its production of
output used (possibly different) bundles of labor and floor space, firms would still sort across locations. However, rather than
sorting according to rent, they would sort according to the cost of the fixed-cost input bundle. That is, larger firms would place
plants in locations in which the fixed-cost input bundle was more expensive.

25We can also show that the marginal efficiency of distribution of more productive firms is relatively smaller in higher-rent
locations. Hence, in higher-rent locations, higher-productivity firms saturate the market relatively more and the cannibalization
between plants is larger. We relegate the formal statement of these additional results to Appendix A.4.
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costs, there is another threshold such that firms with high enough productivity do not set up plants there

either. That is, when all conditions are satisfied, only plants with productivities between these thresholds

set up plants in a given location.

Proposition 6 If limδ→∞
δd

t(δ)ε−1 = 0, for any location s, there exists a productivity threshold zs > 0 such

that njs = 0 if zj < zs. If limz→∞
λj
zε−1 = ∞, then there exists an additional threshold z̄s < ∞ such that

njs = 0 if zj > z̄s.

Our final result in this subsection refers to the total size of firms. The results above condition on a firm’s

productivity. However, empirically, it is easier to condition on other firm observables, such as their total

employment size or the total number of plants. We do not have a result that the total number of plants

is increasing in firm productivity. Not only do firms sort their plants across locations, but their optimal

plant size varies depending on local characteristics. However, under particular parametric assumptions on

a firm’s productivity function, and if wages are constant across space, we can show that more productive

firms employ more workers.26 We let Lj denote the total number of workers of firm j.

Lemma 7 Suppose that z(q,N) = qe−N/σ and local wages are constant across locations at W . Consider

two firms with z1 < z2, then either L1 < L2 or L1 = L2 = 0.

3 Industry Equilibrium

We now proceed to embed the problem of the multi-plant firm that we studied in the previous section into

an industry equilibrium. We do so for a single ‘small’ industry in the context of a full spatial equilibrium,

of which we do not specify the details.27 In particular, we are interested in how competition among firms

interacts with the sorting of firms across space. After describing the industry equilibrium, we study two

comparative statics: a relaxation of the span-of-control cost (perhaps driven by advances in information and

communication technologies) and a reduction in transportation costs. We study the implications of these

technological developments when the change occurs in that industry only. Hence, in the comparative statics

exercises, we keep rents and wages fixed which implies that firms within an industry interact exclusively

through the local industry price index. The exercises illustrate the relevance of transport costs and span-

of-control costs in the limit economy and allow us to speak to the type of changes in sorting documented

by Rossi-Hansberg et al. (2021) and Hsieh and Rossi-Hansberg (2022).28

26The assumption of equal local wages is consistent with the general equilibrium framework in Section 3 of Oberfield et al.
(2020)

27It is straightforward to embed the industry equilibrium into a full spatial equilibrium framework. This can be done in a
number of ways. In one example, spelled out explicitly in Oberfield et al. (2020), each location is characterized by exogenous
amenities in addition to productivity, people are freely mobile across locations, and land can be used for housing or commercial
real estate. We can also accommodate further agglomeration and congestion forces or impediments to mobility. Of course,
other alternative general equilibrium setups could work as well.

28We are well-positioned to study this question relative to existing models of plant location which either have no span-of-
control cost (Ramondo and Rodŕıguez-Clare (2013) and Tintelnot (2016)) or limit a firm’s location to a single plant (Gaubert
(2018) and Ziv (2019)).
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There are Ls workers in location s with Cobb-Douglas preferences across industry aggregates from a

unit continuum of industries indexed by ω ∈ [0, 1] . Consistent with Assumption 1, each industry aggregate

is a Dixit-Stiglitz bundle of the varieties j produced by all firms in that industry, Jω, with elasticity of

substitution across varieties ε.29 Thus if Isω is the total expenditure on the industry aggregate for industry

ω in locations s, the residual demand curve facing firm j ∈ Jω is IsωP
ε−1
sω p−εj , where the price index for

industry ω is the Psω ≡
(∫

j∈Jω p
1−ε
js dj

) 1
1−ε

. Aggregating across firms, we can characterize a location’s

industry price index.30

Proposition 8 In the limit when ∆ → 0, the local price index for industry ω is Psω = ε
ε−1

Ws
BsZsω , where

Zsω ≡
(∫

j∈Jω z
ε−1
j κ(njs)dj

) 1
ε−1

.

Note that industry productivity in a location, Zsω, is the CES aggregate of the firms’ effective productiv-

ities, zj , with the weight on a firm’s productivity given by its local efficiency of distribution, κ(njs). Then,

the local price index is just the standard CES markup times the ‘aggregate’ local marginal cost.31

3.1 Numerical Illustration of an Industry Equilibrium

To illustrate more concretely some of the equilibrium implications of our theory, we now specify all relevant

functional forms and distributions and solve for an equilibrium of the model numerically. Our parametriza-

tion is intended to make the relevant forces visually clear and transparent.

Let transportation costs take the form t(δ;φ) ≡ t(δ/
√
φ), where φ indexes the efficiency of transportation

(i.e. a higher φ implies lower trade costs for a given distance traveled, δ). This implies that κ(n;φ) ≡ κ(φn).32

We parameterize transportation costs as t(δ/
√
φ) = eδ/

√
φ. We set φ = 0.04. Firms’ productivity is given

by z(q,N) = qe−N/σ, where σ indexes the efficiency of a firm’s span-of-control (i.e. a higher σ implies a

higher z for the same aggregate size of the firm, N). We set σ = 1. Finally, we posit a one-to-one mapping

between locations’ total expenditure on the industry Isω and rent Rs; that these expenditures are distributed

according to a truncated Pareto distribution, and that the distribution of firm productivities qj is also given

by a truncated Pareto distribution.33

29For simplicity we abstract from firm entry and hold the set of firms fixed in our comparative statics exercise.
30In Appendix A.5 we determine other aggregate properties of the industry equilibrium when ∆→ 0.
31We have not been able to show existence or uniqueness of the type of equilibrium we desire. The main holdup is that we

have not been able to show that the industry price index in the limiting economy is continuous. While we strongly suspect this
is the case—individual firms have incentives to place plants where other firms have not—we have no formal proof. We hope
future work can improve on this.

32Note φ is defined so that it enters the function t as
√
φ, while it enters the function κ linearly. The reason for the discrepancy

is that the function κ is constructed from an integral over a two-dimensional space.
33Expenditure in location s, Is, is distributed truncated Pareto, so that the measure of locations with income weakly less

than I is [1 − (I/I)−χI ]/[1 − (Ī/I)−χI ], with I = 1, Ī = 25, and χI = 2. We set the elasticity of substitution across varieties,
ε, to 2. We assume that the distribution of fundamentals is such that the rent schedule in a location with income Is is given

by R(Is) = elog(Is)2 . There is a unit measure of firms, and the distribution of productivity is given by a truncated Pareto
distribution so that the measure of firms with pure productivity no greater than q is [1− (q/q)−χq ]/[1− (q̄/q)−χq ], with q = 0.1,
q̄ = 10, and χq = 1.25.
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Figure 8: Sorting in Industry Equilibrium

Plants Sales

We first describe the baseline industry equilibrium and then proceed to study comparative static exercises

with respect to σ and φ. Appendix F describes the numerical algorithm that solves the industry equilibrium.

Figure 8 presents the distribution of plants, njs, and sales, (ε−1)zε−1
j xsκ(njs), for three representative firms:

a firm with the lowest productivity, q = 0.1, a firm with intermediate productivity, q = 1, and a firm with

the highest productivity, q = 10. As implied by Proposition 5, for any pair of firms, there exists an

income threshold (or, equivalently, a rent threshold since rents are monotone in income) such that the more

productive of the two firms sets up more plants above the threshold and fewer plants below. In our example,

the most productive firm operates many plants in middle-income locations and fewer plants in very high

or very low-income locations (the case q = 10 in the left-hand panel of Figure 8). In fact, it operates no

plants in the lowest-income locations. The logic should be clear; rents in high-income locations are high

which encourages high-productivity firms to economize on plants at the cost of having lower efficiency of

distribution, κ(njs). As shown in the right-hand panel of Figure 8, they compensate with higher sales from

each plant which results in higher total sales. Low-income locations, in contrast, are less attractive to large

firms, since their shadow cost of setting up an additional plant is high given the productivity penalty that

arises from their larger span-of-control (λj is increasing in qj). Again, these firms compensate with higher

sales from each plant. Firms with lower productivity then take advantage of low-rent locations given their

lower span-of-control and the lack of competition from top firms in those locations.

3.1.1 Improvements in an Industry’s span-of-control Technology

Consider the effect of an improvement in the span-of-control technology captured by an increase in the

parameter σ in the firm’s productivity function, z(q,N) = qe−N/σ. A better span-of-control technology

25



increases firm productivity and lowers the shadow cost of adding new plants. This motivates firms to have

more plants in more locations. In equilibrium, the additional entry leads to more local competition, through

an increase in Zs at all locations, which makes some firms shrink and others exit from some, or all, locations.

Figure 9 reproduces Figure 8 (the solid lines computed for σ = 1) and compares it with findings for σ = 3

(the dashed lines). In response to the improvement in span-of-control technology, the top firm increases

the measure of plants in low-income locations. It also reduces its presence slightly in the highest-income

markets because of increased competition. The middle-productivity firm expands its presence in both lower

and higher-income locations. Holding fixed the actions of other firms, the lowest productivity firm would

benefit from the improved span-of-control technology as well. However, increased competition pushes it to

exit all markets. The top firm not only enters lower-income markets but, with improved span-of-control

technology, ends up outselling the medium productivity firm that already had a presence in those locations.

The ability to manage a greater span of control, therefore, results in a net reallocation of sales from low to

high-productivity firms.

Figure 9: span-of-control and Sorting in an Industry Equilibrium

Plants Sales

The left-hand panel in Figure 10 shows how an improved span-of-control technology affects the shadow

cost of additional plants, λj . As argued above, λj declines following the direct effect of the technological

change. The effect is clearly magnified for high-productivity firms. These firms benefit most since their

better technology makes them want to expand more extensively in space, and thus makes them benefit

disproportionately from a technology that renders such an expansion less costly. The right-hand panel in

Figure 10 shows the effect of the span-of-control technology on local profitability, xs. Increased competition

lowers the local price index, particularly in low-income locations, which, in turn, lowers local profitability.

These are the locations where top firms expand and where they now compete with lower-productivity firms.
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Although the total number of plants increases everywhere, low-income locations exhibit the largest increase

in the number of plants.

Figure 10: Effect of Improvements in span-of-control Technology on λj and xs

λj xs

3.1.2 Improvements in an Industry’s Transportation Costs

Consider the effects of an improvement in transportation technology captured by an increase in φ in the

transportation cost function, t(δ) = eδ/
√
φ. An increase in transportation efficiency reduces the cost of

reaching customers and so incentivizes firms to have fewer plants with larger catchment areas. Fewer plants

imply lower managerial costs associated with firms’ span-of-control which in turn increases productivity

and induces them to expand. The larger catchment areas effectively reduce the (fixed) rent costs of serving

consumers in a location, which encourages the entry of all firms in more markets but particularly incentivizes

the entry of less-productive firms. Furthermore, lower transport costs imply more cannibalization between

plants. This effect is particularly relevant for high-productivity firms since they operate more plants. Hence,

we expect improvements in transport efficiency to disproportionately benefit low-productivity firms. The

incentives to enter more locations with fewer plants imply that competition at the local level increases

everywhere, as reflected by an increase in Zs. This countervailing force reduces firms’ sales in some locations.

Figure 11 shows the effect of an increase in φ from 0.04 to 0.4 on the mass of plants and sales of the

representative high, medium, and low productivity firms discussed earlier. The left-hand panel shows that

all firms expand to new locations but also have fewer plants in most locations where they were already

present. The top firm expands to low-income locations and now sells everywhere, while the medium and

low-productivity firms expand to higher-income locations. The increase in competition implies that prof-

itability, xs, declines almost uniformly across markets. As the right-hand side of Figure 11 shows, increased

27



Figure 11: Transportation Efficiency and Sorting in an Industry Equilibrium

Plants Sales

competition implies that all three firms see their sales fall in many of the markets where they were operating.

Figure 12: Effect of Improvements in Transportation Efficiency on Total Firm Sales

While the improvement in transport technology leads firms to expand the range of locations in which

they are active, they also have fewer plants. The effect on the total number of plants, therefore, is ambiguous.

In this simulation, the total measure of plants falls in both low-income and high-income markets. However,

it increases in middle-income markets as a large number of lower-productivity firms now choose to enter

these markets. Overall, the improvement in transport costs favors low-productivity firms. Figure 12 shows
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that improvements in transportation technology lead total sales to increase for the lowest-productivity firms

while total sales by the top firms decline.

4 Empirical Evidence

Our theory provides a number of concrete implications about the location of plants in space for industries

that can be approximated by our limit economy. In this section, we contrast its implications on sorting and

the role of span-of-control with U.S. evidence. Our main source of data is the National Establishment Time

Series (NETS), which is provided by Walls & Associates. NETS provides yearly employment information

for ‘lines of business’, which we associate to plants in the theory, and refer to as plants or establishments

in the remainder of the paper.34 For each establishment, we know its geographic coordinates, its industry

classification, and its parent company.35 We classify industries according to the SIC8 industry classification,

with over 18,000 distinct industries. We are interested in exploring how firms place their plants across space.

To do so, we require a consistent definition of a ‘location’. We follow Holmes and Lee (2010), and divide

the continental United States into squares with side lengths of M miles. We present results for values of M

ranging from 3 to 48 miles.

In order to contrast the theory’s predictions with the data, we first need to map firm productivity and

location characteristics to observable measures in the data. In Lemma 7, we show that firm total national

employment in a given industry is strictly increasing in its productivity. We can measure a firm’s total

employment directly in the data.36 We can easily measure each location’s population density in the data

(since all locations are squares with the same area), and then use this metric to rank locations.

We have characterized the model’s predictions for the limit economy. While the underlying forces we

underscore, such as transport costs, span-of-control, and cannibalization are likely relevant for any multiplant

firm, the predictions of our theory are only guaranteed to hold in the limit economy. This limit is likely

a better approximation for firms that set many plants across locations. Thus, when assessing the model’s

predictions, we do so both using all industries and also restricting attention to industries in which plant

catchment areas tend to be small, like services.37

34The definition of a line of business is almost identical to the definition of an establishment or plant (which we use as
synonyms). An establishment may contain one or more lines of business. Although conceivable in principle, in practice almost
all plants have a single line of business. Thus, we refer to a line of business as a plant. For those cases where two lines of
business are present in the same exact location, and thus in the same plant, each line of business is identified as a single plant.

35A more detailed description of NETS can be found in Rossi-Hansberg et al. (2021). We use only a cross-section of NETS
for 2014. Compared to Census data, a cross-section in NETS has an excess of very small firms, partly because it keeps track
of non-employee firms. Thus, we restrict our attention to firms with at least five employees. Crane and Decker (2019) observes
that NETS has imputed employment data. Once we restrict to firms with at least five employees, the fraction of plants with
non-imputed employment is 81.5%. In Appendix C, D, and E, we show that our empirical findings regarding sorting and
span-of-control are robust to using only the non-imputed data.

36In our data, employment is better measured than revenue. Note also that, in our data, franchises are listed as separate firms.
We hope future research can explore how span-of-control considerations are affected or relaxed by contracting arrangements
such as franchise agreements.

37In Appendix H we show, for a numerical example, that the limit predictions derived from our model hold well for simulated
plant locations when ∆ is small, but may fail when ∆ is large and firms set up very few plants across space.
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4.1 Sorting in the Data

A central and distinctive prediction of our model is that more productive firms sort towards ‘better’ locations.

Our main results related to sorting are presented in Proposition 5. This proposition establishes that more

productive firms set up relatively more plants in locations with higher land rents. We do not observe local

rents in the NETS data. However, using alternative data sources, it is clear that there is a very tight positive

relationship between rents and our ordering of locations using population density. Figure B.1 in Section B

of the Appendix shows the relationship for zip codes and counties using ACS data to estimate densities and

Zillow data to compute rents. Hence, in what follows, we use population density as a measure of the local

characteristics on which firms sort.

As in the theory, let Ls, denote population density in location s. The average density of the locations of

a firm j, L̄j , is the average of the location density, Ls, across all of the firm’s plants. Once we compute L̄j ,

we subtract industry fixed effects. We use the residuals as our measurement of a firm’s average density of

its locations. The results below are robust to constructing L̄j using a weighted average, where the weights

are based on total employment in the plant’s location.

Figure 13: Sorting: Firm Size and Local Density

Notes: For each firm, we calculate the log of average employment density across all of the firm’s plants (we use M = 12). Then, we
subtract industry fixed effects and collect the residuals. Finally, we fit a kernel-weighted local regression of the residuals on the log of
total firm employment. The regression shown in the figure uses a zero-degree polynomial (local-mean smoothing) and the bandwidth
that minimizes the conditional weighted mean integrated squared error. The shaded area indicates the 95% percent confidence interval.

Figure 13 shows that the relationship between ln L̄j and lnLj is roughly linear when we restrict attention

to firms with national size in an industry greater than 10 employees. Hence, in Table I we estimate a linear

relationship and show that, indeed, the relationship between a firm’s log average location density and its log

national employment size is positive and significant, after controlling for industry fixed effects. The table
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also presents a selected set of robustness checks. The implication of the theory holds robustly in the data:

bigger firms sort towards dense locations. The second column of Table I confirms the same finding when

we look at a larger spatial resolution M = 48, although the coefficient is smaller probably due to spatial

averaging across markets.

The implications we derived from the limit problem where transport costs are large and span-of-control

and fixed costs are small should describe particularly well the behavior of firms that choose to set up many

plants or that operate in industries in which trade costs are high. Column 3 Table I shows that the sorting

pattern is indeed present and strongly significant when we limit the sample to firms with 100 or more plants,

even though it reduces the sample size tremendously. Column 4 restricts the sample to industries that have

at least one firm with at least 100 plants and finds an even steeper positive relationship which is again highly

significant. Finally, the sorting pattern we have uncovered could arise from omitted characteristics of firms

that are correlated with density. For example, if firms tend to set up plants where they are founded and

denser locations incubate more productive firms, we would obtain a positive relationship between average

firm density and total firm employment.38 We address this concern by examining sorting patterns among

firms with the same headquarter locations. As shown in Column 5 in Table I, the positive relationship

between total firm employment and the average employment density of the firm’s plant locations is robust

to the inclusion of fixed effects for the firm’s headquarter locations for firms with more than 100 plants.

Table V in Appendix C shows many more variations of these results using different thresholds and

selection criteria. All of them show similar findings. In addition, we implement a leave-out strategy to

address the potential concern that the firm’s presence could be driving local density. The resulting sorting is

virtually identical. We also present results when we limit the sample to plants with non-imputed employment

data, as well as using alternative weights.

Table II presents the estimated elasticity of firm average location density to firm national employment

by major industrial sector. As discussed above, the limit problem we study is likely a better approximation

of the problem of firms that sell goods and services at short distances. Broad industry classifications do not

provide an ideal grouping of industries according to their tradability. Nevertheless, it is probably the case

that firms in industries within, say, retail trade sell services that are less tradable than firms in industries

within manufacturing. Table II shows that the elasticity of firm average location density with respect to

firm national employment is in fact smaller in manufacturing than in other sectors. We find the highest

elasticities in FIRE and services.

4.2 The Largest Firm in Town

We can also explore the implications of Proposition 5 on sorting by looking at how the size of the firm with

the largest number of plants in each location, Lj∗(s), changes with population density, Ls, where j∗(s) is the

identity of the firm that places the most plants in s. Sorting implies that, in locations with low population

densities, low productivity and smaller firms should place more plants than large firms. Table III shows that,

38See Walsh (2019) for a recent study of firm entry across locations.
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Table I: Sorting: Firm Size and Local Density

Industries in which HQ fixed effects,
Baseline Baseline Firms with largest firm has Firms with
M = 12 M = 48 ≥ 100 plants ≥ 100 plants ≥ 100 plants

(1) (2) (3) (4) (5)
ln L̄j ln L̄j ln L̄j ln L̄j ln L̄j

lnLj 0.165*** 0.0952*** 0.146*** 0.172*** 0.0791**
(0.000975) (0.000848) (0.0249) (0.00164) (0.0350)

Observations 3,670,994 3,673,053 876 1,387,742 652
R-squared 0.139 0.099 0.384 0.080 0.664
SIC8 FE Yes Yes Yes Yes Yes
HQ Location FE No No No No Yes
M 12 48 12 12 12

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: The table presents the results of regressing the log of the average employment density across all of the firm’s plants on the log
employment of the firm at the national level and industry fixed effects. The first column presents the baseline results with M = 12.
The second column shows the baseline the results with M = 48. The third column restricts the analysis to firms with at least 100
plants. The fourth column restricts the analysis to industries where there is a firm with at least 100 plants. The fifth column adds
headquarters’ location fixed effect for each firm to the case where we restrict to firms with at least 100 plants.

Table II: Sorting by Major Industry

By major industry All Manufacturing Services Retail Trade FIRE

(1) (2) (3) (4) (5)
ln L̄j ln L̄j ln L̄j ln L̄j ln L̄j

lnLj 0.165*** 0.0523*** 0.160*** 0.150*** 0.234***
(0.000975) (0.00272) (0.00153) (0.00247) (0.00320)

Observations 3,670,994 274,478 1,479,391 856,860 244,048
R-squared 0.139 0.192 0.097 0.068 0.122
SIC8 FE Yes Yes Yes Yes Yes
M 12 12 12 12 12

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: The table presents the results of regressing the log of the average employment density of each location, weighted by the number
of establishments of a particular firm operating in a particular industry in the location, on the log employment of the firm at the
national level and industry fixed effects. The first presents the baseline case for all industries, and the rest of the columns present
results by major sector.

in fact, the national size of the firm with the most plants in a location increases with population density,

controlling for industry fixed effects. The first column presents our baseline case, the second one the case

with 48-mile square resolution, the third when we restrict the sample to firms with at least 100 plants, and

the fourth when we restrict the sample to industries that have at least a firm with 100 or more plants. In

all cases, the slope is positive a highly significant.

Table VI in Appendix D presents a large set of robustness checks, including different thresholds for sample
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selection, results for major industry groupings, as well as additional spatial resolutions and an exercise with

only non-imputed data. In the analysis presented in Table III, there are locations in which multiple firms

tie for the highest number of plants. In those cases, we use the average national firm size among these

firms. In Table VI in Appendix D we also show that our finding is robust to dropping cases with ties or to

using the national size of the largest firm among those tied. Finally, one may worry that the largest firm in

a location could be large enough to mechanically and significantly affect the local employment density. In

Table VI we show that the results are only marginally affected when excluding the firm’s own contribution

when calculating local employment density.

Table III: National size of the largest firm in town

Industries in which
Baseline Baseline Firms with largest firm has
M = 12 M = 48 ≥ 100 plants ≥ 100 plants

(1) (2) (3) (4)
lnLj∗(s) lnLj∗(s) lnLj∗(s) lnLj∗(s)

lnLs 0.395*** 0.594*** 0.131*** 0.516***
(0.00266) (0.00461) (0.00811) (0.00366)

Observations 1,984,474 1,006,305 211,517 616,248
R-squared 0.616 0.644 0.554 0.600
SIC8 FE Yes Yes Yes Yes
M 12 48 12 12

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: The table presents the results of finding the log employment of the firm with the most plants in an industry and location,
and regressing its log total employment on the log density of the location and industry fixed effects, weighted by each industry’s total
employment. In locations where multiple firms are tied for the highest number of plants, we take the average of the firm size. Column
1 presents the baseline results when M = 12 and column 2 for M = 48. Column 3 restricts the analysis to firms with at least 100
plants, and column 4 restricts the analysis to industries where there is a firm with at least 100 plants. For population density, we use
the data from the 2010 decennial census taken from Manson et al. (2021).

4.3 The Role of Span-of-control Costs

In this section, we present evidence on a particular mechanism driving firm sorting across locations in our

model. Lemma 4 shows that higher productivity firms have a higher cost of increasing their span-of-control

by an additional plant, λj . As is evident from equation 4, in choosing the number of plants in a given

location, firms trade-off these firm-specific fixed costs against profits per plant, which are increasing in a

firm’s productivity. This trade-off implies that two firms present in the same location, but with different

productivity, might decide to have the same number of plants. However, the firm with higher productivity

will always have larger plants. Hence, a testable prediction of this mechanism is that, among firms with

the same number of plants in a given location, the plants operated by the more productive, and therefore

nationally larger, firm should be larger.
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Formally, we can write the average plant size of firm j in location s as

l̄js = (ε− 1)zε−1
j

xs
Ws

κ (njs)

njs
. (6)

Then, it is straightforward to see that, if zj > zj̃ , then l̄js > l̄j̃s in locations where njs = nj̃s. Note that,

in most models of multi-plant production, a firm’s effective productivity in a given location (for example,

its productivity adjusted by the location’s distance to the firm’s headquarters) determines both the number

of plants and the size of those plants. In contrast to our prediction, this implies that there should be no

systematic relationship between firm productivity and plant size after controlling for the number of plants

in a location.

Table IV: Span of control

Industries in which
Baseline Baseline Firms with largest firm has
M = 12 M = 48 ≥ 100 plants ≥ 100 plants

(1) (2) (3) (4)
ln l̄js ln l̄js ln l̄js ln l̄js

lnLj,−js 0.114*** 0.131*** 0.275*** 0.104***
(0.000897) (0.000962) (0.00296) (0.000911)

lnnjs 0.137*** 0.172*** -0.168*** 0.0720***
(0.00897) (0.00682) (0.0111) (0.00883)

(lnnjs)
2 -0.0813*** -0.0811*** -0.00158 -0.0564***

(0.00447) (0.00251) (0.00528) (0.00431)

Observations 409,364 386,094 126,999 336,424
R-squared 0.573 0.511 0.746 0.588
SIC8-location FE Yes Yes Yes Yes
M 12 48 12 12

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: The table presents the results of regressing the log of the average plant employment of a firm within a location on the log
national employment of the firm (excluding the own firm contribution of employment in a location from that firm’s total employment),
industry fixed effects and controls for the number of plants that the firm has in the location. Column 1 presents the baseline results
when M = 12 and column 2 for M = 48. Column 3 restricts the analysis to firms with at least 100 plants, and column 4 restricts the
analysis to industries where there is a firm with at least 100 plants.

Table IV presents our estimates of the relationship between log average plant employment, l̄js, and the

log of total firm employment in alternative locations, Lj,−js, after controlling for the number of plants and

industry-location fixed effects. To control for the term κ (njs) /njs we use a second-order polynomial in

lnnjs. We exclude the location’s employment from a firm’s total employment in order to avoid a mechanical

relationship between national firm size and local average plant size. In Table VIII in Appendix E we show

that the results are similar if we use a higher order polynomial to approximate κ (njs) /njs, or if we calculate

a firm’s national size including the location’s employment. As before, in Table IV we present estimates for

different spatial resolutions, as well as for samples where we restrict attention to firms with more than 100
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plants, or to industries that have such firms. In all cases the relationship between average plant size and

national firm size is positive and significant, after controlling for the number of establishments.39

5 Conclusions

In this paper, we propose a novel methodology to analyze the problem of how to serve customers distributed

across heterogeneous locations when firms face transport costs, fixed costs of setting up new plants, and

span-of-control costs of managing multiple plants. Although the basic trade-off between transport costs and

cannibalization is clear, characterizing the solution to this core problem in economics has proven elusive

given its complexity. In order to make progress, we propose a limit problem in which firms choose a density of

plants in space. A large combinatorial problem is therefore reduced to a much simpler calculus of variations

problem. The solution can be easily characterized and the problem can be readily incorporated into a

general equilibrium spatial setup with labor mobility.

The solution to the firm’s problem has a number of unique predictions. First, and most important, is that

span-of-control considerations imply that firms sort in space. Specifically, more productive firms operate

relatively more plants in locations with higher rents. Less productive firms, in turn, operate more plants in

low-rent locations. Furthermore, conditional on the number of plants, more productive firms operate larger

plants. These and other predictions of the theory are empirically verified using NETS establishment-level

data for 2014 in the U.S., both when we look at all industries and when we restrict the sample to industries

with small catchment areas that might be better approximated by the limit economy.

The methodology proposed in this paper can readily be used to understand the role of changes in

transport infrastructure on plant locations. We illustrate numerically how firms in a ‘small’ industry – one

that does not affect local rents or wages – adjust by opening fewer plants but in more locations. We also carry

out a similar quantitative exercise to illustrate the effects of improvements in the span-of-control technology,

where we see large firms expanding into low-rent markets. Studying general equilibrium counterfactuals for

‘large’ industries that affect local factor prices, or for the whole economy, is left for future research. A

quantitative general equilibrium analysis of such changes could be used to study the implications of secular

technological changes for the spatial distribution of economic activity, as well as local competition and

concentration. These are exciting avenues that our methodology now makes feasible.

39These results are consistent with those found in Fernandes et al. (2018), which finds that a large fraction of the variation of
exports in bilateral trade is through the intensive margin of trade. In our model, this variation maps into variation in average
plant employment within a location. Moreover, our empirical findings are inconsistent with the application of trade models
relying on Pareto distributions to explain the way firms locate their plants across space within the US, e.g., the ones that rely
on the distributional assumptions discussed in Lind and Ramondo (2018).
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Online Appendix

A Proofs

A.1 Proof of Lemma 3: Properties of the Efficiency of Distribution

We provide a proof of Lemma 3 in this section before proving Propositions 1 and 2 in the next two sections,

even though the latter come earlier in the main text. We do this because Lemma 3 does not depend on those

propositions, but the fact that κ(·) is increasing and concave is useful in the proofs of those propositions.

We first prove Lemma 3 for the case in which space is one dimensional, followed by the case in which

space is two dimensional.

A.1.1 One Dimension

First, define t̃(δ) ≡ t(δ)1−ε. The integral of the function t̃ (|s|) over a line segment of length x can be

expressed as

g(x) =

∫ x/2

−x/2
t̃ (|δ|) dδ = 2

∫ x/2

0
t̃(δ)dδ.

It will sometimes be convenient to change variables and express this as

g(x) = x

∫ 1

0
t̃
(x

2
u
)
du.

We thus have two expressions for the efficiency of distribution:

κ(n) = ng

(
1

n

)
= 2n

∫ 1
2n

0
t̃(δ)dδ (7)

κ(n) = ng

(
1

n

)
=

∫ 1

0
t̃
( u

2n

)
du (8)

It will be useful to have expressions for the first and second derivative. Differentiating each with respect to

n yields two expressions for the first derivative:

κ′(n) = 2

∫ 1
2n

0
t̃(δ)dδ − 1

n
t̃

(
1

2n

)
(9)

κ′(n) =

∫ 1

0

[
− 1

2n2
t̃′
( u

2n

)]
du (10)

An expression for the second derivative comes from differentiating (9)

κ′′(n) =
1

2n3
t̃′
(

1

2n

)
(11)
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Claim A.1 κ(n) ≡ ng
(

1
n

)
is strictly increasing and strictly concave, and satisfies the following properties:

1. κ(0) = 0;

2. limn→∞ κ(n) = 1;

3. 1− κ(n) follows a power law with exponent 1 as n→∞, i.e., limn→∞ n [1− κ(n)] = −1
4 t̃
′(0) > 0.

Proof. t̃ is strictly decreasing because t is strictly increasing and ε > 1. As a result, (10) implies that κ is

strictly increasing and (11) implies that κ is strictly concave. κ(0) = 0 follows from (8) and the fact that

limy→∞ t(y) =∞ which implies that limy→∞ t̃(y) = 0. limn→∞ κ(n) = 1 follows from (8) and t̃(0) = 1.

Beginning with (8), taking the limit as n→∞, using x = 1/n, and applying L’Hopital’s rule gives

lim
n→∞

n (1− κ(n)) = lim
n→∞

n

(
1−

∫ 1

0
t̃
( u

2n

)
du

)
= lim

x→0

1−
∫ 1

0 t̃
(
ux
2

)
du

x

= lim
x→0

0−
∫ 1

0
u
2 t̃
′ (ux

2

)
du

1

= −1

4
t̃′(0)

Claim A.2 If limδ→∞ t̃(δ)δ = 0 then κ′(0) = 2
∫∞

0 t̃(δ)dδ

Proof. Taking the limit of the (9) gives

lim
n→0

κ′(n) = lim
n→0

2

∫ 1
2n

0
t̃(δ)dδ − 1

n
t̃

(
1

2n

)
= 2

∫ ∞
0

t̃(δ)dδ − 2 lim
δ→∞

δt̃ (δ)

Claim A.3 If limδ→∞ t̃(δ)δ
2 = 0, then κ′′(0) = 0

Proof. The second derivative of κ at zero is defined as κ′′(0) = limn→0
κ′(n)−κ′(0)

n . limδ→∞ t̃(δ)δ
2 = 0
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implies limδ→∞ t̃(δ)δ = 0, so Claim A.2 gives κ′(0) = 2
∫∞

0 t̃(δ)dδ. Using this along (9) gives

κ′′(0) = lim
n→0

κ′(n)− κ′(0)

n

= lim
n→0

2
∫ 1

2n
0 t̃(δ)dδ + 1

n t̃
(

1
2n

)
− 2

∫∞
0 t̃(δ)dδ

n

= lim
n→0

1
n t̃
(

1
2n

)
n

+ lim
n→0

2
∫ 1

2n
0 t̃ (δ) dδ − 2

∫∞
0 t̃ (δ) dδ

n

Using L’Hopital’s rule for the second term and then changing variables to δ = 1
2n gives

κ′′(0) = lim
n→0

1

n2
t̃

(
1

2n

)
+ lim
n→0

[
−2

1

2n2
t̃

(
1

2n

)]
= 4 lim

δ→∞
δ2t̃ (δ) + lim

δ→∞
−4δ2t̃ (δ)

= 0

A.1.2 Two Dimensions

First, define t̃(δ) ≡ t(δ)1−ε. A hexagon with area x has sides of length l = ψ
√
x, where ψ ≡ 21/23−3/4. The

integral of the function t̃ (‖s‖) over a hexagon with area x can be expressed as

g(x) =

∫ ψx1/2

0
$

(
δ

ψx1/2

)
t̃(δ)2πδdδ

where $(r) is the fraction of circle with radius r that intersects with a hexagon with side length 1. That is,

if α ≡
√

3/2 is the radius of the largest circle that can be inscribed in a hexagon with side length 1, then

$(r) = 1 for r ∈ [0, α], $′(r) < 0 for r ∈ (α, 1), and $(1) = 0.40 We first rewrite g in a form that is easier

40What is $? To get at this, for a hexagon with side length 1, a circle with radius δ =
√

1− (1/2)2 =
√

3
2

will be fully

inscribed. Consider a circle with radius between δ ∈
(√

3
2
, 1
)

. What fraction of the circle is inside the hexagon? Consider

two line segments, each emanating from the center of the hexagon to the border of the hexagon. One of length
√

3
2

which is

perpendicular to the side of the hexagon, and one of length δ. The angle θ between the two satisfies cos(θ) =
√

3/2
δ

. The fraction

of the circle of length δ that is outside the hexagon is therefore 12θ
2π

. Therefore $(δ) =

{
1 0 ≤ δ ≤

√
3/2

1− 6
π

cos−1
(√

3/2
δ

) √
3/2 ≤ δ ≤ 1

.
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to manipulate. First, define t̃(δ) ≡ t(δ)1−ε. We then can change variables

g(x) =

∫ ψ
√
x

0
$

(
δ

ψ
√
x

)
t̃(δ)2πδdδ

= ψ2x

∫ 1

0
$(u)t̃

(
ψ
√
xu
)

2πudu

This implies that

κ(n) = ng

(
1

n

)
= n

∫ ψn−1/2

0
$

(
δ

ψn−1/2

)
t̃(δ)2πδdδ (12)

κ(n) = ng

(
1

n

)
= ψ2

∫ 1

0
$(u)t̃

(
ψn−1/2u

)
2πudu (13)

It will be useful to have expressions for the first and second derivative. Differentiating with respect to n

yields

κ′(n) = ψ2

∫ 1

0
$(u)t̃′

(
ψn−1/2u

)(
−ψ1

2
n−3/2u

)
2πudu (14)

To find the second derivative, we change variables once more to get

κ′(n) =

∫ ψn−1/2

0
$

(
δ

ψn−1/2

)[
−t̃′(δ)

]
πδ2dδ

Differentiating once more, using $(1) = 0, and changing variables yields

κ′′(n) =

∫ ψn−1/2

0
$′
(

δ

ψn−1/2

)
δ

ψ

1

2
n−

1
2
[
−t̃′(δ)

]
πδ2dδ

= ψ3n−5/2π

2

∫ 1

0
$′(u)u3

[
−t̃′
(
ψn−1/2u

)]
du

Using the fact that $′(r) = 0 for r ∈ (0, α) gives

κ′′(n) = ψ3n−5/2π

2

∫ 1

α
$′(u)u3

[
−t̃′
(
ψn−1/2u

)]
du (15)

Claim A.4 κ(n) ≡ ng
(

1
n

)
is strictly increasing and strictly concave, and satisfies the following properties:

1. κ(0) = 0;

2. limn→∞ κ(n) = 1;

3. 1−κ(n) follows a power law with exponent 1
2 as n→∞, i.e., limn→∞

√
n [1− κ(N)] = −t̃′(0)

√
2

33/4

(
1
3 + ln 3

4

)
>

0.
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Proof. (14) implies that κ′ is strictly positive because t′ > 0 and ε > 1 imply that t̃′ < 0. (15) implies that

κ′′ is strictly negative because $′ is strictly negative on (α, 1). κ(0) = 0 follows from (13) and the fact that

limy→∞ t(y) = ∞ which implies that limy→∞ t̃(y) = 0. limn→∞ κ(n) = 1 follows from (13) and the facts

that t̃(0) = 1, and ψ2
∫ 1

0 $(u)2πudu = 1.

Beginning with (13), we can express
√
n[1 − κ(n)] as

√
n
(

1− ψ22π
∫ 1

0 $(u)t̃
(
ψu√
n

)
udu

)
. Taking the

limit as n→∞, using x =
√
n, and using L’Hopital’s rule gives

lim
n→∞

√
n (1− κ(n)) = lim

n→∞

√
n

(
1− ψ22π

∫ 1

0
$(u)t̃

(
ψu√
n

)
udu

)
= lim

x→0

1− ψ22π
∫ 1

0 $(u)t̃ (ψux)udu

x

= lim
x→0

−ψ22π
∫ 1

0 $(u)t̃′ (ψux)ψu2du

1

=
[
−t̃′(0)

]
ψ22π

∫ 1

0
$(u)ψu2du

The result follows from the fact that ψ22π
∫ 1

0 $(u)ψu2du = ψ
(

1
3 + ln 3

4

)
= 21/23−3/4

(
1
3 + ln 3

4

)
Before proceeding, it will be useful to derive an alternative expression for κ′(n). Differentiating (12)

with respect to n yields

κ′(n) =

∫ ψn−1/2

0
$

(
δ

ψn−1/2

)
t̃(δ)2πδdδ

+n$(1)t̃
(
ψn−1/2

)
2πψn−1/2

(
−1

2

)
ψn−3/2

+n

∫ ψn−1/2

0
$′
(

δ

ψn−1/2

)
δ

ψ

1

2
n−1/2t̃(δ)2πδdδ

Noting that $(1) = 0 and changing variables gives

κ′(n) =

∫ ψn−1/2

0

[
$

(
δ

ψn−1/2

)
+

1

2
$′
(

δ

ψn−1/2

)
δ

ψn−1/2

]
t̃(δ)2πδdδ

=
ψ2

n

∫ 1

0

[
$(u) +

1

2
$′(u)u

]
t̃
(
ψn−1/2u

)
2πudu

We can separate this into two terms, the integral over u ∈ [0, α] and the integral from [α, 1]. For u ∈ [0, α),

$(u) = 1 and $′(u) = 0, so we can express the integral as

κ′(n) =
ψ2

n

∫ α

0
t̃
(
ψn−1/2u

)
2πudu+

ψ2

n

∫ 1

α

[
$(u) +

1

2
$′(u)u

]
t̃
(
ψn−1/2u

)
2πudu (16)

Claim A.5 If limδ→∞ t̃(δ)δ
2 = 0 then κ′(0) =

∫∞
0 t̃(δ)2πδdδ
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Proof. Taking the limit of the first term of (16) gives

lim
n→0

ψ2

n

∫ α

0
t̃
(
ψn−1/2u

)
2πudu = lim

n→0

∫ αψn−1/2

0
t̃(δ)2πδdδ =

∫ ∞
0

t̃(δ)2πδdδ

The second term of (16) can be expressed as

ψ2

n

∫ 1

α

[
$(u) +

1

2
$′(u)u

]
t̃
(
ψn−1/2u

)
2πudu =

∫ 1

α

[
$ (u)

u
+

1

2
$′(u)

]
t̃
(
ψn−1/2u

)(
ψn−1/2u

)2
2πdu

We next show that the limit of this second term is zero. If limx→∞ t̃(x)x2 = 0, then t̃(x)x2 has a peak. call

it r̄. Then the function
[
$(u)
u + 1

2$
′ (u)

]
t̃
(
ψn−1/2u

) (
ψn−1/2u

)2
2π is dominated by

[
$(u)
u + 1

2$
′(u)

]
r̄2π.

Since the latter is integrable on [α, 1] (
∫ 1
α

[
$(u)
u + 1

2$
′(u)

]
du ≤

∫ 1
α

[
1
u + 1

2$
′(u)

]
du = ln 1

α −
1
2) Dominated

convergence means we can bring the limit inside the integral. Since limn→0 t̃
(
ψn−1/2u

) (
ψn−1/2u

)2
= 0, the

limit of the second terms is zero.

Claim A.6 If limδ→∞ t̃(δ)δ
4 = 0, then κ′′(0) = 0

Proof. The second derivative of κ at zero is defined as κ′′(0) = limn→0
κ′(n)−κ′(0)

n . limδ→∞ t̃(δ)δ
4 = 0

implies limδ→∞ t̃(δ)δ
2 = 0, so Claim A.5 gives κ′(0) =

∫∞
0 t̃(δ)2πδdδ. Using this along (16) gives

κ′′(0) = lim
n→0

ψ2

n

∫ 1
0

[
$(u) + 1

2$
′(u)u

]
t̃
(
ψn−1/2u

)
2πudu−

∫∞
0 t̃ (δ) 2πδdδ

n

= lim
n→0

ψ2

n

∫ 1
α

[
$(u) + 1

2$
′(u)u

]
t̃
(
ψn−1/2u

)
2πudu

n
+

ψ2

n

∫ α
0 t̃
(
ψn−1/2u

)
2πudu−

∫∞
0 t̃ (δ) 2πδdδ

n

We next show that each of the two terms is equal to zero. We first rearrange the first term and take the limit

inside the integral using dominated convergence (the function
[
−
(
$(u) + 1

2$
′(u)u

)]
2πu
u4 is integrable on the

domain u ∈ [α, 1], in particular
∫ 1
α

[
−
(
$(u) + 1

2$
′(u)u

)]
2πudu = 4α, and the fact that limy→∞ t̃(y)y4 = 0

implies that t̃(y)y4 has a uniform upper bound)

lim
n→0

ψ2

n

∫ 1
α −

[
$(u) + 1

2$
′(u)u

]
t̃
(
ψn−1/2u

)
2πudu

n

= lim
n→0

1

ψ2

∫ 1

α
−
[
$(u) +

1

2
$′(u)u

]
t̃
(
ψn−1/2u

)(
ψn−1/2u

)4 1

u4
2πudu

=
1

ψ2

∫ 1

α
−
[
$(u) +

1

2
$′(u)u

] [
lim
n→0

t̃
(
ψn−1/2u

)(
ψn−1/2u

)4
]

2πu

u4
du

=
1

ψ2

∫ 1

α
−
[
$(u) +

1

2
$′(u)u

] [
lim
y→∞

t̃(y)y4

]
2πu

u4
du

=
4α

ψ2
lim
y→∞

t̃ (y) y4

= 0
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For the second term, we can change variables and use L’Hopital’s rule.

lim
n→0

ψ2

n

∫ α
0 t̃
(
ψn−1/2u

)
2πudu−

∫∞
0 t̃ (δ) 2πδdδ

n
= lim

n→0

∫ αψn−1/2

0 t̃ (δ) 2πδdδ −
∫∞

0 t̃ (δ) 2πδdδ

n

= lim
n→0

t̃
(
αψn−1/2

)
2παψn−1/2

(
−1

2
αψn−3/2

)
= − π

(αψ)2 lim
n→0

t̃
(
αψn−1/2

)(
αψn−1/2

)4

= − π

(αψ)2 lim
y→∞

t̃(y)y4

= 0

Together, these imply that κ′′(0) = 0.

A.2 Proof of Proposition 1: Convergence of Profit Function

Define the function G(x) to be the integral of T (‖s‖)1−ε over a line segment of length x if d = 1 or over a

regular hexagon of area x if d = 2 centered at the origin. That is,

G(x) ≡ 2

∫ x/2

0
T (δ)1−εdδ, d = 1

G(x) ≡
∫ ψx1/2

0
$

(
δ

ψx1/2

)
T (δ)1−ε2πδdδ, d = 2

where $(r) is the fraction of circle with radius r that intersects with a hexagon with side length 1 as in

Appendix A.1.2. Notice that G(x) = ∆dg
(
x

∆d

)
.41 We begin by restating a well-known result from discrete

geometry.

Theorem A.7 (Theorem of L. Fejes Toth on sums of moments): Let f : [0,∞) → R be a nondecreasing

function and let H be a convex 3,4,5, or 6-gon in E2. Then for any set of n points P in E2,∫
H

min {f (‖x− p‖) : p ∈ P} dx ≥ n
∫
Hn

f (‖x‖) dx

where Hn is a regular hexagon in E2 with area |H|/n and center at the origin.

41This follows from the definition of t along with the change of variables δ̃ = δ
∆

. In one dimension, this gives:

G(x) = 2

∫ x/2

0

t

(
δ

∆

)1−ε

dδ = ∆2

∫ 1
∆
x
2

0

t
(
δ̃
)1−ε

dδ̃ = ∆g
( x

∆

)
In two dimensions, this gives:

G(x) =

∫ ψ
√
x

0

$

(
δ

ψ
√
x

)
t

(
δ

∆

)1−ε

2πδdδ = ∆2

∫ 1
∆
ψ
√
x

0

$

(
δ̃

1
∆
ψ
√
x

)
t
(
δ̃
)1−ε

2πδ̃dδ̃ = ∆2g
( x

∆2

)
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The analogous statement in one dimension is straightforward.

Theorem A.8 Let f : [0,∞)→ R be a nondecreasing function and let L be a line segment in E. Then for

any set of n points P in E, ∫
L

min {f (‖x− p‖) : p ∈ P} dx ≥ n
∫
Ln

f (‖x‖) dx

where Ln is a line segment in E with length |L|/n and center at the origin.

Proof. For the n points {pk}nk=1, let `k be the set of points in the line segment L for which pk is the closest.

Each `k is a line segment. Let x̄k and xk denote the upper and lower endpoints of the line segment, and let

x∗k =
x̄k+xk

2 denote its center.

Consider the line segment `k:∫ x̄k

xk

f (|x− pk|) =

∫ x̄k−pk

0
f(u)du+

∫ pk−xk

0
f(u)du

=

∫ |`k|/2
0

f(u)du+

∫ x̄k−pk

|`k|/2
f(u)du+

∫ |`k|/2
0

f(u)du+

∫ pk−xk

|`k|/2
f(u)du

=G (|`k|) +

∫ x̄k−pk

|`k|/2
f(u)du+

∫ pk−xk

|`k|/2
f(u)du (17)

If x∗k ≥ pk, which implies x̄k − pk ≥ |`k| /2 ≥ x∗k − pk, the fact that f is increasing implies

∫ x̄k−pk

|`k|/2
f(u)du ≥

∫ x̄k−pk

|`k|/2
f (u− (x∗k − pk)) du =

∫ |`k|/2
pk−xk

f(v)dv

If, on the other hand, x∗k ≤ pk, which implies pk − xk ≥ |`k| /2 ≥ pk − x∗k, we have

∫ pk−xk

|`|/2
f(u)du ≥

∫ pk−xk

|`k|/2
f (u− (pk − x∗k)) du =

∫ |`k|/2
x̄k−pk

f(v)dv

In either case, the sum of the final two terms of (17) are non-negative, giving∫ x̄k

xk

f (|x− pk|) ≥ G (|`k|)

Note further that G(x) = 2
∫ x/2

0 f(u)du is convex because f non-decreasing implies that G′(x) = f
(
x
2

)
is non-decreasing. Therefore, Jensen’s inequality implies

n∑
k=1

G (|`k|) = n

(
1

n

n∑
k=1

G (|`k|)

)
≥ nG

(
1

n

n∑
k=1

|`k|

)
= nG

(
|Ln|
n

)
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We next apply these theorems to our context.

Lemma A.9 For any k and any finite set of points Oi ⊂ Ski ,∫
s∈Ski

max
o∈Oi

T (δso)
1−ε ds ≤ |Oi|G

(
kd

|Oi|

)

Proof. Since T (δ) is strictly increasing in δ, T (δ)1−ε is strictly decreasing. The theorem of L. Fejes Toth

on sums of moments and Theorem A.8 therefore imply that∫
s∈Ski

max
o∈Oi

T (δso)
1−ε ds = −

∫
s∈Ski

min
o∈Oi

(
−T (δso)

1−ε
)
ds ≤ − |Oi|

(
−G

(
kd

|Oi|

))
= |Oi|G

(
kd

|Oi|

)

The next result will be useful in deriving a lower bound for the firm’s profit, by studying the profit

delivered by a feasible but sub-optimal policy.

Lemma A.10 For any k > 0, N ∈ N0

sup
Oi⊆Ski ||Oi|=N

∫
s∈Ski

max
o∈Oi

T (δso)
1−ε ds ≥ NG

(
ρ(N)

kd

N

)

where ρ(N) =
(

1 + 33/4
√

2N

)−2
.

Proof. We first consider the one-dimensional case. It is feasible to place the N points so that the line

segment Ski with length k is divided into N segments each of length k/N with an element of Oi at the center

of each line segment. Such a choice of Oi would deliver the value NG
(
k
N

)
. Since this value is weakly lower

than the optimum and G is increasing, we have

sup
Oi⊆Ski ||Oi|=N

∫
s∈Ski

max
o∈Oi

T (δso)
1−ε ds ≥ NG

(
k

N

)
≥ NG

(
ρ(N)

k

N

)

We next turn two the case of two dimensions. As in the proof of the lemma above, define ψ ≡ 21/23−3/4.

The set Ski is a square with side length k. It is sufficient to show that for any non-negative integer N ,

one can fit N regular hexagons with area
(

1 + 1
ψ
√
N

)−2
k2

N inside the square Ski as this would constitute a

particular Oi choice. Since the side length of a hexagon with area x has side length of ψ
√
x, each of these

hexagons would have a side length l = ψ√
N

1
1+ψ−1N−1/2k. Since regular hexagons can form a regular tiling

of the plane, we can consider hexagons each with side length l and tiling with c =
⌈
ψ
√

3
√
N
⌉

columns and

r =
⌈

1
ψ
√

3

√
N
⌉

rows, where dxe denotes the smallest integer weakly larger than x. Our proposed lattice
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has total width of
(

3
2c+ 1

2

)
l and total height weakly less than (2r + 1)

√
l2 − (l/2)2 =

(√
3r +

√
3

2

)
l (with

equality if there is more than one column). We first show that that total width is smaller than k, i.e.,(
3
2c+ 1

2

)
l ≤ k. To see this, we have(

3

2
c+

1

2

)
l =

(
3

2

⌈
ψ
√

3
√
N
⌉

+
1

2

)
ψ√
N

1

1 + ψ−1N−1/2
k

≤
(

3

2

(
ψ
√

3
√
N + 1

)
+

1

2

)
ψ√
N

1

1 + ψ−1N−1/2
k

=
1 + 2ψ√

N

1 + ψ−1N−1/2
k

≤ k

where the last step follows because 4 ≤ 33/2 implies 2ψ = 2
2−1/233/4 ≤ 33/42−1/2 = 1

ψ .

We next show that the total height is less than k, i.e.,
(√

3r +
√

3
2

)
l ≤ k. To see this, we have

(
√

3r +

√
3

2

)
l =

(
√

3

⌈
1

ψ
√

3

√
N

⌉
+

√
3

2

)
ψ√
N

1

1 + ψ−1N−1/2
k

≤

(
√

3

(
1

ψ
√

3

√
N + 1

)
+

√
3

2

)
ψ√
N

1

1 + ψ−1N−1/2
k

=
1 + 1

ψ
√
N

1 + ψ−1N−1/2
k = k

Finally, we note that such a lattice contains cr =
⌈
21/23−1/4

√
N
⌉ ⌈

2−1/231/4
√
N
⌉
≥ N regular hexagons. It

follows that N regular hexagons each with area
(

1 + 1
ψ
√
N

)−2
k2

N fit inside the square Ski .

Claim A.11 For any k, ∆, π̄k∆
j ≥ π∆

j where

π̄k∆
j ≡ sup

{Ni≥0}

∑
i∈Ik
−NiR

k
i ξ + Z

qj , ∑
i′∈Ik

Ni′

ε−1 ∑
i∈Ik

D̄k
i b̄
k
iNiG

(
kd

Ni

)
+ Z (qj , 0)ε−1 D̄b̄kd−3

∫ k

0
T (δ)1−εdδ
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Proof. For any set of plants O, let Oki be the subset that are in square i. We begin with:∫
s
Ds max

o∈O

{
boT (δso)

1−ε
}
ds =

∑
i∈Ik

∫
s∈Ski

Ds max
o∈O

{
boT (δso)

1−ε
}
ds

≤
∑
i∈Ik

∫
s∈Ski

Ds

∑
i′∈Ik

max
o∈Ok

i′

{
boT (δso)

1−ε
}
ds

≤
∑
i∈Ik

∫
s∈Ski

D̄k
i

∑
i′∈Ik

b̄ki′ max
o∈Ok

i′

T (δso)
1−ε ds

=
∑
i∈Ik

D̄k
i b̄
k
i

∫
s∈Ski

max
o∈Oki

T (δso)
1−ε ds+

∑
i∈Ik

∑
i′ 6=i

D̄k
i b̄
k
i′

∫
s∈Ski

max
o∈Ok

i′

T (δso)
1−ε ds

We can bound the first term using Lemma A.9. To bound the second term, note that∫
s∈Ski

max
o∈Ok

i′

T (δso)
1−εds ≤

∫
s∈Ski

max
o∈Sk

i′

T (δso)
1−ε ds.

The term
∫
s∈Ski

maxo∈Ok
i′
T (δso)

1−ε ds is maximized if Ski , Ski′ are contiguous, in which case,

∫
s∈Ski

max
o∈Sk

i′

T (δso)
1−ε ds = kd−1

∫ k

0
T (δ)1−εdδ

In addition,
∑

i

∑
i′ 6=i D̄

k
i b̄
k
i′ ≤

1
k2 D̄b̄, so that

∑
i

∑
i′ 6=i D̄

k
i b̄
k
i′
∫
s∈Ski

maxo∈Ok
i′
T (δso)

1−ε ds ≤ D̄b̄kd−3
∫ k

0 T (δ)1−εdδ.

Together, these imply

∫
s
Ds max

o∈O

{
boT (δso)

1−ε
}
ds ≤

∑
i

D̄k
i b̄
k
i

∫
s∈Ski

∣∣∣Oki ∣∣∣G
(

kd∣∣Oki ∣∣
)

+ D̄b̄kd−3

∫ k

0
T (δ)1−εdδ

Similarly, ∑
o∈O
−Roξ =

∑
i

∑
o∈Oki

−Roξ ≤
∑
i

∑
o∈Oki

−Rki ξ =
∑
i

−
∣∣∣Oki ∣∣∣Rki ξ
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Together, these imply that

π∆
j = sup

O

∑
o∈O
−Roξ + Z (qj , |O|)ε−1

∫
s
Ds max

o∈O

{
boT (δso)

1−ε
}
ds

≤ sup
O

∑
i∈Ik
−
∣∣∣Oki ∣∣∣Rki ξ + Z (qj , |O|)ε−1

∑
i∈Ik

D̄k
i b̄
k
i

∣∣∣Oki ∣∣∣G
(

kd∣∣Oki ∣∣
)

+ D̄b̄kd−3

∫ k

0
T (δ)1−εdδ


≤ sup

{Ni∈N0}

∑
i∈Ik
−NiR

k
i ξ + Z

qj , ∑
i′∈Ik

Ni′

ε−1 ∑
i∈Ik

D̄k
i b̄
k
iNiG

(
kd

Ni

)
+ Z (qj , 0)ε−1 D̄b̄kd−3

∫ k

0
T (δ)1−εdδ

≤ sup
{Ni≥0}

∑
i∈Ik
−NiR

k
i ξ + Z

qj , ∑
i′∈Ik

Ni′

ε−1 ∑
i∈Ik

D̄k
i b̄
k
iNiG

(
kd

Ni

)
+ Z (qj , 0)ε−1 D̄b̄kd−3

∫ k

0
T (δ)1−ε dδ

= π̄k∆
j

where we use that Z is decreasing in N and slightly abuse notation so that Ni for a particular firm is choice

of number of plants in Ski .

Claim A.12 Fix k. In the limit as ∆→ 0,

lim
∆→0

π̄k∆
j ≤ π̄kj ≡ sup

n≥0

∫ {
−nsRks + z

(
qj ,

∫
ns̃ds̃

)ε−1

D̄k
s b̄
k
sκ (ns)

}
ds

Proof. We begin with the definition of π̄k∆
j , use the expressions for G, T , Z, and ξ in terms of g, t, z, and

∆, and then substitute ni ≡ ∆dNi
kd to get

π̄k∆
j ≡ sup

{Ni≥0}

∑
i∈Ik

{
−NiR

k
i ξ + Z (qj , N)ε−1 D̄k

i b̄
k
iNiG

(
kd

Ni

)}
+ Z (qj , 0)ε−1 D̄b̄kd−3

∫ k

0
T (δ)1−εdδ

= sup
{Ni≥0}

∑
i∈Ik

{
−NiR

k
i ∆

d + z
(
qj ,∆

dN
)ε−1

D̄k
i b̄
k
iNi∆

dg

(
1

∆d

kd

Ni

)}
+ z (qj , 0)ε−1 D̄b̄kd−3

∫ k

0
t

(
δ

∆

)1−ε
dδ

= sup
{ni≥0}

kd
∑
i∈Ik

−niRki + z

qj , kd∑
ĩ∈Ik

nĩ

ε−1

D̄k
i b̄
k
i nig

(
1

ni

)+ z (qj , 0)ε−1 D̄b̄kd−3

∫ k

0
t

(
δ

∆

)1−ε
dδ
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Taking the limit gives

lim
∆→0

π̄k∆
j = lim

∆→0
sup
{ni≥0}

kd
∑
i

−niRki + z

qj , kd∑
ĩ

nĩ

ε−1

D̄k
i b̄
k
i nig

(
1

ni

)+

+ lim
∆→0

z(qj , 0)ε−1D̄b̄kd−3

∫ k

0
t

(
δ

∆

)1−ε
dδ

= sup
{ni≥0}

kd
∑
i

−niRki + z

qj , kd∑
ĩ

nĩ

ε−1

D̄k
i b̄
k
i nig

(
1

ni

)
= sup

{ni≥0}
kd
∑
i

−niRki + z

qj , kd∑
ĩ

nĩ

ε−1

D̄k
i b̄
k
i κ (ni)


where we used the assumption that t(δ) diverges as δ →∞. Let N k be the set of strategies in which ns is

constant for all s ∈ Ski . Then we can write

lim
∆→0

π̄k∆
j = sup

n∈N k

∫ {
−nsRks + z

(
qj ,

∫
ns̃ds̃

)ε−1

D̄k
s b̄
k
sκ (ns)

}
ds

≤ sup
n≥0

∫ {
−nsRks + z

(
qj ,

∫
ns̃ds̃

)ε−1

D̄k
s b̄
k
sκ (ns)

}
ds

= π̄k

We next show that for each j, it is without loss of generality to impose a uniform upper bound on the

density of plants.

Lemma A.13 Define n̄j to satisfy R = z(qj , 0)ε−1D̄b̄κ′(n̄j).

π̄kj = sup
n∈[0,n̄j ]

∫ {
−nsRks + z

(
qj ,

∫
s̃
ns̃ds̃

)ε−1

D̄k
s b̄
k
sκ (ns)

}
ds

Proof. We show that it is without loss to restrict the strategies to the set n ∈ [0, n̄j ]. Restricting the set

of strategies yields a weakly lower payoff. To show the opposite inequality, for any strategy, let N+ be the

subset of S for which ns > n̄j . We will show that the alternative strategy in which

ñ =

{
ns s 6∈ N+

n̄j s ∈ N+

would give a weakly higher payoff, Consider any profile R,D, b such that Rs ≥ R and Ds ≤ D̄ and bs ≤ b̄.
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For shorthand, we express zj = z
(
qj ,
∫
s nsds

)
and z̃j = z

(
qj ,
∫
s ñsds

)
.

Πj(n)−Πj (ñ) =

∫ {
−nsRs + zε−1

j Dsbshκ (ns)
}
ds−Π (ñ)

≤
∫ {
−nsRs + z̃ε−1

j Dsbsκ (ns)
}
ds−Π (ñ)

=

∫
s∈N+

{
−nsRs + z̃ε−1

j Dsbsκ (ns)
}
ds−

∫
s∈N+

{
−ñsRs + z̃ε−1

j Dsbsκ (ñs)
}
ds

=

∫
s∈N+

{
−nsRs + z̃ε−1

j Dsbsκ (ns)
}
ds−

∫
s∈N+

{
−n̄sRs + z̃ε−1

j Dsbsκs (n̄)
}
ds

=

∫
s∈N+

{
− (ns − n̄j)Rs + z̃ε−1

j Dsbs [κ (ns)− κ (n̄)]
}
ds

The concavity of κ implies κ (ns) ≤ κ (n̄j) + κ′ (n̄j) (ns − n̄j), so that κ (ns) − κ (n̄j) ≤ κ′ (n̄j) (ns − n̄j) =
R

z(qj ,0)ε−1D̄b̄
(ns − n̄j). Plugging this in gives

Πj(n)−Πj (ñ) ≤
∫
s∈N+

{
− (ns − n̄j)Rs + z̃ε−1

j Dsbs
R

z (qj , 0)ε−1 D̄b̄
(ns − n̄j)

}
ds

=

∫
s∈N+

{
−1 +

z̃ε−1
j Dsbs

z (qj , 0)ε−1 D̄b̄

R

Rs

}
Rs (ns − n̄j) ds

≤ 0

Claim A.14

πj ≤ sup
n≥0

∫ {
−nsRs + z

(
qj ,

∫
s̃
ns̃ds̃

)ε−1

Dsbsκ (ns)

}
ds

Proof. For any strategy n, define Π̄k(n) and Π (n) as

Π̄k(n) =

∫ {
−nsRks + z

(
q,

∫
s̃
ns̃ds̃

)ε−1

D̄k
s b̄
k
sκ (ns)

}
ds

Π(n) =

∫ {
−nsRs + z

(
qj ,

∫
s̃
ns̃ds̃

)ε−1

Dsbsκ (ns)

}
ds

Since R, D, and b are continuous on a compact space, they are uniformly continuous. This implies that for

any ϕ > 0, there is an η small enough so that k < η implies both
∣∣Rks −Rs∣∣ ≤ ϕ, and

∣∣D̄k
s b̄
k
s −Dsbs

∣∣ ≤ ϕ.
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With that, for any n ∈ [0, n̄j ],

∣∣∣Π̄k(n)−Π(n)
∣∣∣ =

∣∣∣∣∣
∫ {
−ns

(
Rks −Rs

)
+ z

(
qj ,

∫
s̃
ns̃ds̃

)ε−1 [
D̄k
s b̄
k
s −Dsbs

]
κ (ns)

}
ds

∣∣∣∣∣
≤

∫ {
ns

∣∣∣Rks −Rs∣∣∣+ z

(
qj ,

∫
s̃
ns̃ds̃

)ε−1 ∣∣∣D̄k
s b̄
k
s −Dsbs

∣∣∣κ (ns)

}
ds

≤
∫ {

nsϕ+ z

(
qj ,

∫
s̃
ns̃ds̃

)ε−1

ϕκ (ns)

}
ds

≤
∫ {

n̄jϕ+ z (qj , 0)ε−1 ϕ
}
ds

≤ ϕ

∫ {
n̄j + z (qj , 0)ε−1

}
ds

Therefore Π̄k (·) is uniformly convergent on the domain n ∈ [0, n̄j ] as k → 0. Therefore

lim
k→0

sup
n∈[0,n̄j ]

Π̄k(n) = sup
n∈[0,n̄j ]

lim
k→0

Π̄k(n)

In other words, we have πj ≤ π̄kj for all k, so taking the limit of both sides yields

πj ≤ lim
k→0

π̄kj = lim
k→0

sup
n∈[0,n̄j ]

Π̄k(n) = sup
n∈[0,n̄j ]

lim
k→0

Π̄k(n) = sup
n∈[0,n̄j ]

Π (n) ≤ sup
n≥0

Π(n)

We next bound the payoff from below.

Claim A.15

π∆
j ≥ πk∆

j ≡ sup
{Ni∈N0}

∑
i

−NiR̄
k
i ξ + Z

(
qj ,
∑
ı̃

Nı̃

)ε−1∑
i

Dk
i b
k
iNiG

(
ρ (Ni)

kd

Ni

)

Proof. Begin with∫
s
Ds max

o∈O

{
boT (δso)

1−ε
}
ds =

∑
i

∫
s∈Ski

Ds max
o∈O

{
boT (δso)

1−ε
}
ds

≥
∑
i

∫
s∈Ski

Ds max
o∈Oki

{
boT (δso)

1−ε
}
ds

≥
∑
i

Dk
i b
k
i

∫
s∈Ski

max
o∈Oki

T (δso)
1−ε ds
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Similarly, ∑
o∈O
−Roξ =

∑
i

∑
o∈Oki

−Roξ ≥
∑
i

∑
o∈Oki

−R̄ki ξ =
∑
i

−
∣∣∣Oki ∣∣∣ R̄ki ξ

Together, these yield a lower bound for π∆
j

π∆
j = sup

O

∑
o∈O
−Roξ + Z (qj , |O|)ε−1

∫
s
Ds max

o∈O

{
boT (δso)

1−ε
}
ds

≥ sup
O

∑
i

−
∣∣∣Oki ∣∣∣ R̄ki ξ + Z (qj , |O|)ε−1

∑
i

Dk
i b
k
i

∫
s∈Ski

max
o∈Oi

T (δso)
1−ε ds

= sup
{Ni∈N0}

sup
{Oki ⊂Ski ||Oki |=Ni}

∑
i

−
∣∣∣Oki ∣∣∣ R̄ki ξ + Z (qj , |O|)ε−1

∑
i

Dk
i b
k
i

∫
s∈Ski

max
o∈Oki

T (δso)
1−ε ds

= sup
{Ni∈N0}

sup
{Oi⊂Ski ||Oki |=Ni}

∑
i

−NiR̄
k
i ξ + Z

(
q,
∑
i

Ni

)ε−1∑
i

Dk
i b
k
i

∫
s∈Ski

max
o∈Oki

T (δso)
1−ε ds

= sup
{Ni∈N0}

∑
i

−NiR̄
k
i ξ + Z

(
qj ,
∑
i

Ni

)ε−1∑
i

Dk
i b
k
i sup
{Oki ⊂Ski ||Oki |=Ni}

∫
s∈Ski

max
o∈Oki

T (δso)
1−ε ds

≥ sup
{Ni∈N0}

∑
i

−NiR̄
k
i ξ + Z

(
qj ,
∑
i

Ni

)ε−1∑
i

Dk
i b
k
iNiG

(
ρ (Ni)

kd

Ni

)
= πk∆

j

Claim A.16 For any k, in the limit as ∆→ 0,

lim
∆→0

πk∆
j ≥ πk ≡ sup

{ns≥0}

∫
s

{
−nsR̄ks + z

(
qj ,

∫
ns̃ds̃

)ε−1

Dk
sb
k
sκ (ns)

}
ds
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Proof. Replace and use ni = ∆dNi
kd

πk∆
j ≡ sup

{Ni∈N0}

∑
i

−NiR̄
k
i ξ + Z

(
qj ,
∑
i

Ni

)ε−1∑
i

Dk
i b
k
iNiG

(
ρ(Ni)

kd

Ni

)

= sup
{Ni≥0}

∑
i

−dNie R̄ki ξ + Z

(
qj ,
∑
i

dNie

)ε−1∑
i

Dk
i b
k
i dNieG

(
ρ (dNie)

kd

dNie

)

= sup
{Ni≥0}

∑
i

−dNie R̄ki ∆d + z

(
qj ,∆

d
∑
i

dNie

)ε−1∑
i

Dk
i b
k
i dNie∆ddg

(
1

∆dd
ρ (dNie)

kd

dNie

)

= sup
{ni≥0}

∑
i

−
⌈
kd

∆d
ni

⌉
R̄ki ∆d + z

(
qj ,∆

d
∑
i

⌈
kd

∆d
ni

⌉)ε−1∑
i

Dk
i b
k
i

⌈
kd

∆d
ni

⌉
∆dg

 1

∆d
ρ

(⌈
kd

∆d
ni

⌉)
kd⌈
kd

∆dni

⌉


Next, we use the fact that lim inf∆→0 sup{n≥0} f (n,∆) ≥ sup{n≥0} lim inf∆→0 f (n,∆)42 along with

lim∆→0 ∆d
⌈
kd

∆dni

⌉
= kdni and limu→∞ ρ(u) = 1 to get

lim
∆→0

πk∆
j ≥ sup

{ni≥0}
lim
∆→0

∑
i

−
⌈
kd

∆d
ni

⌉
R̄ki ∆d +

+ z

(
qj ,∆

d
∑
i

⌈
kd

∆d
ni

⌉)ε−1∑
i

Dk
i b
k
i

⌈
kd

∆d
ni

⌉
∆dg

 1

∆d
ρ

(⌈
kd

∆d
ni

⌉)
kd⌈
kd

∆dni

⌉


= sup
{ni≥0}

∑
i

−kdniR̄ki + z

(
qj ,
∑
i

kdni

)ε−1∑
i

Dk
i b
k
i k

dnig

(
1

ni

)

= sup
{ni≥0}

kd
∑
i

−niR̄ki + z

qj , kd∑
ĩ

nĩ

ε−1

Dk
i b
k
i κ (ni)


Since κ(n) is strictly concave, Jensen’s inequality implies that

sup
ns

∫
s∈Ski

κ (ns) ds subject to

∫
s∈Ski

nsds ≤ ni

42Quick proof: For any n0, ∆ we have f (n0,∆) ≤ supn f (n,∆). Taking limits preserves inequalities, so that
lim inf∆→0 f (n0,∆) ≤ lim inf∆→0 supn f (n,∆). The conclusion follows from taking sup of both sides with respect to n0.
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is maximized for ns = ni
|Ski |

, i.e., ns is constant. This means

lim
∆→0

πk∆
j ≥ sup

{ni≥0}
kd
∑
i

−niR̄ki + z

qj , kd∑
ĩ

nĩ

ε−1

Dk
i b
k
i κ (ni)


= sup

{ns≥0}

∫
s

{
−nsR̄ks + z

(
qj ,

∫
ns̃ds̃

)ε−1

Dk
sb
k
sκ (ns)

}
ds

= πkj

Claim A.17

πj ≥ sup
{ni≥0}

∫ {
−nsRs + z

(
qj ,

∫
ns̃ds̃

)ε−1

Dsbsκ (ns)

}
ds

Proof. We can again use the fact that lim infh→0 sup{n≥0} f (n, h) ≥ sup{n≥0} lim infh→0 f (n, h) to write

as k → 0

πj ≥ lim inf
k→0

πk∆
j ≥ lim inf

k→0
πkj

≥ sup
{ns≥0}

lim inf
k→0

∫
s

{
−nsR̄ks + z

(
qj ,

∫
ns̃ds̃

)ε−1

Dk
sb
k
sκ (ns)

}
ds

= sup
{ns≥0}

∫
s

{
−nsRs + z

(
qj ,

∫
ns̃ds̃

)ε−1

Dsbsκ (ns)

}
ds

A.3 Proof of Proposition 2: Convergence of the Policy Function

In this appendix we show uniform convergence of the policy function. We do this in two steps. First, we

derive properties of the limiting economy. We show that if the limiting problem has a unique solution, n∗,

then for any ε > 0 there exists an η > 0 such that n ∈ N̄ and |Π(n)−Π(n∗)| < η imply
∫
s∈S |ns − n

∗
s| ds < ε,

where N̄ is a space of functions with a uniform bound.

In the second step, we study the sequence of economies as ∆→ 0. As in the proof of convergence of the

value function in Appendix A.2, we construct a sequence of bounds on the profit function that get tighter as

∆→ 0. We show that for economy ∆, the optimal choice O∆∗ has a corresponding strategy in the limiting

economy, n∆∗. As ∆ → 0, the bounds get tighter and two things happen. First, O∆∗ gets close to n∆∗ in

the sense that over any Jordan measurable set A, ∆d
∣∣O∆∗ ∩ A

∣∣ uniformly approaches
∫
s∈A n

∆∗
s ds. Second,

the corresponding strategy n∆∗ delivers a value in the limiting economy close to optimum. This, along with

the first step, implies that n∆∗ converges to n∗. Namely, we have uniform convergence of the policy function

to n∗.
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As in the proof of Proposition 1, we use device of using k × k squares to find upper and lower bounds.

In that proof, the key step was to take the limit as ∆ → 0 for a given k and then take k → 0. Here, the

key trick is to choose use a sequence of k = K(∆), so that as we take the limit as ∆ → 0, the sequence

k = K (∆) also converges to zero (albeit more slowly than does ∆).

A.3.1 Step 1: Properties of the Limiting Problem

In this section, we show that if there is a unique solution to the limiting problem, then for any ε > 0 there

exists an η > 0 such that |Π(n)−Π(n∗)| < η implies
∫
s∈S |n− n

∗
s| ds < ε. If the N̄ were compact, then

we could use a short, standard proof following Lemma 3.7 of Lucas and Stokey. But we have no reason to

believe that N̄ compact. Fortunately, we can use direct methods, and the fact that κ is strictly concave is

sufficient.

We beginning by defining several terms.

Let N ≡ {n : S → R} be the set of feasible policies.

Let N (N) ≡
{
n : S → R such that

∫
s∈S nsds = N

}
be the set of feasible policies for which the firm sets

up a measure N of plants.

It will be useful to define a finite upper bound for the measure of plants in a location. Define n̄ to satisfy

κ′(n̄) = 1
2

R
z(q,0)ε−1x̄

, where x̄ ≡ (maxs∈S bs) (maxs∈S Ds) and R = mins∈S Rs.

Define N̄ ≡ n̄|S| to be an upper bound on the total mass of plants given the upper bounds n̄ for any

particular location.

Define N̄ ≡ {n : S → [0, n̄]} to be the set of strategies for which ns is bounded between 0 and n̄, and let

N̄ (N) ≡
{
n : S → [0, n̄] such that

∫
s∈S nsds = N

}
be the subset of those where the total measure of plants

is N .

It will also be useful to have notation for the partial inverse of κ′. κ′(·) is strictly decreasing when re-

stricted to a strictly positive domain. Let χ be the partial inverse of κ′, so that χ(x) ≡

{
κ′−1(x) x < κ′(0)

0 x ≥ κ′(0)

and note that χ(x) is continuous.

Lemma A.18 For any N there exists a unique solution to the problem supn∈N (N) Π(n). The optimum

n̂(N) and the multiplier λ(N) associated with the constraint
∫
s∈S nsds = N are both continuous in N .

Proof. Fix N . Consider the problem

max
n∈N (N)

Π(n) ≡ max
n∈N (N)

∫
s∈S

[
−Rsns + xsz(q,N)ε−1κ(ns)

]
ds

The objective function is strictly concave and the constraint set is convex, so the first order conditions are

necessary sufficient to characterize a solution. Letting λ be the multiplier on the constraint
∫
s∈S nsds = N ,

the first order condition for ns is

Rs + λ ≥ xszε−1κ′(ns) with equality if ns > 0.

57



Then the optimal policy and Lagrange multiplier satisfy

n̂s(N) = χ

(
Rs + λ (N)

xszε−1

)
N =

∫
s∈S

χ

(
Rs + λ(N)

xszε−1

)
ds

Note that for any N > 0, there is a unique λ(N) that satisfies the second equation. The continuity of χ

thus implies the continuity n̂s(N) and λ(N) in N .

Lemma A.19 Suppose there is a unique solution, n∗, and that N∗ =
∫
s∈S n

∗
sds. Then

lim
N→N∗

∫
s∈S
|n̂s(N)− n∗s| ds = 0.

Proof. Since n∗ is optimal, λ(N∗) = −d[z(q,N∗)ε−1]
dN∗

∫
s∈S xsκ(n∗s)ds ≥ 0. λ(N) is continuous, so that λ(N) >

−R/2 in a neighborhood ofN∗. As a result, the first order condition that Rs+λ(N) ≥ z(q,N)ε−1xsκ
′(n̂s(N))

with equality if n̂s(N) > 0 means that we can find a positive lower bound for κ′(n̂s(N)) whenever λ(N) > 0.

Either n̂s(N) = 0 or

κ′(n̂s(N)) =
Rs + λ(N)

xsz(q,N)ε−1
≥ R/2

x̄z(q, 0)ε−1
.

Define n̊ to satisfy κ′(̊n) = R/2
x̄z(q,0)ε−1 . Then n̊s ≥ n∗s and, if N is sufficiently close to N∗, n̊s > n̂s(N).

Then |n∗s − n̂s(N)| ≤ 2n̊ when N is close enough to N∗. 2n̊ is intregrable over S, and n̂(N) converges to n

pointwise, so dominated convergence implies that limN→N∗
∫
s∈S |n̂s(N)− n∗s| ds = 0.

Lemma A.20 The maximization problem supn∈N Π(n) obtains a maximum, Π∗. If n ∈ arg maxn∈N Π(n)

then
∫
nsds ≤ N̄ . If

∫
s∈S nsds > N̄ , then Π∗ −Π(n) ≥ 1

2R(
∫
s∈S nsds− N̄).

Proof. [0, N̄ ] is a closed, bounded segment of the real line, so it is compact. Further Π (n̂(N)) is continuous

in N . Thus Π (n̂(N)) obtains the maximum on N ∈
[
0, N̄

]
.

We next show that any strategy n such that
∫
nsds > N̄ is strictly dominated. Let ñ be defined so

that ñs = min {ns, n̄}. Letting N ≡
∫
s∈S nsds and Ñ ≡

∫
s∈S ñsds, note that z(q, Ñ)ε−1 ≥ z(q,N)ε−1. This

implies

Π (ñ)−Π(n) =

∫ {
−Rsñs + z

(
q, Ñ

)ε−1
xsκ(ñs)

}
ds−

∫ {
−Rsns + z (q,N)ε−1 xsκ(ns)

}
ds

≥
∫ {
−Rsñs + z

(
q, Ñ

)ε−1
xsκ (ñs)

}
ds−

∫ {
−Rsns + z

(
q, Ñ

)ε−1
xsκ (ns)

}
ds

=

∫ {
−Rs (ñs − ns) + z

(
q, Ñ

)ε−1
xs [κ(ñs)− κ(ns)]

}
ds
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Since κ(ns)− κ(ñs) ≤ κ′ (n̄) (ns − ñs) = 1
2

R
z(q,0)ε−1x̄

(ns − ñs), this is

Π (ñ)−Π(n) ≥
∫ −Rs (ñs − ns) +

1

2

z
(
q, Ñ

)ε−1

z (q, 0)ε−1

xs
x̄
R (ñs − ns)

 ds

=

∫ Rs
R
− 1

2

z
(
q, Ñ

)ε−1

z (q, 0)ε−1

xs
x̄

R (ns − ñs) ds

≥
∫

1

2
R (ns − ñs) ds

≥
∫

1

2
R (ns − n̄) ds

=
1

2
R

(∫
nsds−N

)
The conclusion follows from

∫
nsds > N and Pi∗ ≥ Π(ñ).

Lemma A.21 Suppose that there is a unique solution n∗. For any γ > 0, there is an η1 > 0 such that for

all n ∈ N , |Π(n)−Π(n∗)| < η1 implies
∣∣∫
s∈S nsds−

∫
s∈S n

∗
sds
∣∣ < γ.

Proof. We first consider functions n such that
∫
s∈S nsds ∈ [0, N̄ + γ]. Let N∗ =

∫
s∈S n

∗
sds. For γ > 0,

define Eγ =
{
N ∈

[
0, N̄ + γ

]
such that |N −N∗| ≥ γ

}
. Lemma A.20 states that N∗ ∈ [0, N̄ ], so that

Eγ is non-empty and compact. For any such γ, let η ≡ minN∈Eγ
∣∣maxn∈N (N) Π(n)−Π(n∗)

∣∣. Since the

function being minimized is continuous in N and Eγ is compact, the minimum is attained. Moreover,

since N∗ 6∈ Eγ , it follows that η > 0. As a result, any N ∈ [0, N̄ + γ] with |N − N∗| ≥ γ implies that∣∣maxn∈N (N) Π(n)−Π(n∗)
∣∣ ≥ η.

We next consider functions n is such that
∫
s∈S nsds > N̄ + γ. For such functions, Lemma A.20 implies

that Π(n∗)−Π(n) ≥ 1
2Rγ.

Together, we have that if |Π(n∗)−Π(n)| ≤ η1 ≡ min
{
η, 1

2Rγ
}

then
∣∣∫
s∈S nsds−

∫
s∈S n

∗
sds
∣∣ < γ.

Lemma A.22 Let n̂(N) ≡ arg maxn∈N (N) Π(n). For any ε > 0, there exists a function hε(N) that is

continuous and strictly positive on N ∈ (0,∞), such that for any ñ ∈ N (N), Π (n̂(N)) − Π(ñ) ≥ hε(N)

implies ‖n̂(N)− ñ‖ > ε.

Proof. Fix ε > 0 and N > 0. We will omit the argument N whenever there is no ambiguity.

Let λ(N) be the multiplier on the constraint
∫
nsds = N in the maximization problem.

Define ωs(u) ≡ −Rsu− λu+ xsz
ε−1κ(u). For any s ∈ S and τ ∈ (0,∞), ωs(n̂s)− ωs(n̂s + τ) is strictly

positive and strictly increasing in τ . To see this note the fact that n̂ is optimal implies that ω′s(n̂s) ≤ 0 (with

equality if n̂s > 0). Further, ωs is strictly concave because it inherits the strict concavity of κ. Thus for any
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τ > 0 the strict concavity implies that ωs(n̂s)−ωs(n̂s+τ) is strictly positive, ωs(n̂s+τ) < ωs(n̂s)+τω′s(n̂s) ≤
ωs(n̂s), and also that it is strictly increasing:

d

dτ
[ωs(n̂s)− ωs(n̂s + τ)] = −ω′s(n̂s + τ) > −ω′s(n̂s) ≥ 0.

Next, define the functions

Hε(N) ≡ inf
n∈N (N)

Π (n̂(N))−Π(n) subject to

∫
s∈S
|ns − n̂s| ds ≥ ε

hε(N) ≡ inf
{τs≥0}s∈S

∫
s∈S

[ωs (n̂s)− ωs (n̂s + τs)] ds subject to

∫
s∈S

τsds =
ε

2

We now show that Hε(N) ≥ hε(N). For any n such that
∫
s∈S n̂sds =

∫
s∈S nsds, we can multiply both sides

by λ(N) and rearrange to get
∫
s∈S λ(N) (ns − n̂s) ds = 0, meaning that we can rearrange Hε(N) as

Hε(N) = inf
n∈N (N)

∫
s∈S

[ωs (n̂s)− ωs (ns)] ds subject to

∫
s∈S
|ns − n̂s| ds ≥ ε

We can rearrange this further as

Hε(N) = inf
n∈N (N)

∫
s∈S|ns<n̂s

[ωs (n̂s)− ωs (ns)] ds+

∫
s∈S|ns≥n̂s

[ωs (n̂s)− ωs (ns)] ds

subject to
∫
s∈S|ns<n̂s |ns − n̂s| ds =

∫
s∈S|ns≥n̂s |ns − n̂s| ds and

∫
s∈S|ns≥n̂s |ns − n̂s| ds ≥

ε
2 . Since ωs (n̂s) ≥

ωs (ns),we have

Hε(N) ≥ inf
n∈N (N)

∫
s∈S|ns≥n̂s

[ωs (n̂s)− ωs (ns)] ds

subject to
∫
s∈S|ns<n̂s |ns − n̂s| ds =

∫
s∈S|ns≥n̂s |ns − n̂s| ds and

∫
s∈S|ns≥n̂s |ns − n̂s| ds ≥

ε
2 . Relaxing a

constraint gives a weakly smaller number, so that

Hε(N) ≥ inf
n∈N (N)

∫
s∈S|ns≥n̂s

[ωs (n̂s)− ωs (ns)] ds subject to

∫
s∈S|ns≥n̂s

|ns − n̂s| ds ≥
ε

2

≥ inf
{τs≥0}s∈S

∫
s∈S

[ωs (n̂s)− ωs (n̂s + τs)] ds subject to

∫
s∈S

τsds ≥
ε

2

Since ωs (n̂s)− ωs (n̂s + τ) is increasing and convex in τ on τ ∈ [0,∞), the value of the right hand side

is unchanged if we impose that the constraint holds with equality. This gives

Hε(N) ≥ inf
{τs≥0}s∈S

∫
s∈S

[ωs (n̂s)− ωs (n̂s + τs)] ds subject to

∫
s∈S

τsds =
ε

2

= hε(N)
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We next show that hε(N) is strictly increasing in ε. To do this, we solve the minimization problem.

The objective function is strictly convex and the constraint set is convex, so the first order conditions are

necessary and sufficient for a minimum. Let µ be the multiplier on the constraint. Then the first order

condition for τs is

ω′s (n̂s + τs) + µ ≤ 0 with equality if τs > 0

or, equivalently,

−Rs − λ(N) + xsz
ε−1κ′ (n̂s + τs) + µ ≤ 0 with equality if τs > 0

Since ω′ is continuous, τs is continuous is s.

Note that it must be that µ > 0: otherwise the FOC for τs would imply τs = 0, ∀s because ωs (n̂s + τ)

is strictly concave on τ ∈ (0,∞) and ω′s (n̂s) ≤ 0, ∀s, and this would violate the constraint. Note also that

Rs + λ > µ for all s: limτ→∞ ωs (n+ τ) = −∞ implies that the optimal τ is finite, so that the FOC implies

−Rs − λ(N) + µ ≤ −xszε−1κ′ (n̂s + τs) < 0:. Recalling that χ is the partial inverse of κ′ and that χ is

continuous, the first order condition for τs can be restated as

τs = max

{
0, χ

(
Rs + λ− µ
xszε−1

)
− n̂s

}
. (18)

µ must therefore satisfy ∫
s∈S

max

{
0, χ

(
Rs + λ− µ
xszε−1

)
− n̂s

}
=
ε

2

The continuity and monotonicity of χ implies that this has a unique solution, µ(ε,N) that is continuous in

ε. Note also that µ(ε,N) is continuous in N for fixed ε.

We next show that hε(N) is strictly increasing in ε. Consider ε > 0. Let τs(ε) be the solution for ε de-

scribed by (18). Note that τs is continuous in s. There must be an η̄ > 0 such that the set E = {s|τs (ε) ≥ η̄}
has strictly positive measure (if no such η̄, E existed, it would violate the constraint

∫
s∈S τs(ε)ds ≥

ε
2). Since

τs is continuous and E is bounded, E is compact. Consider ε′ such that 0 ≤ ε
2 − η̄|E| <

ε′

2 < ε
2 . For any

such ε′, let η = 1
|E|

(
ε
2 −

ε′

2

)
∈ (0, η̄). Consider the strategy of τs(ε

′) = τs(ε)− η if s ∈ E and τs(ε
′) = τs(ε)

if s 6∈ E. Then

hε′(N)− hε(N) ≤
∫
s∈S

[
ωs (n̂s + τs (ε))− ωs

(
n̂s + τs

(
ε′
))]

ds

=

∫
s∈E

[ωs (n̂s + τs (ε))− ωs (n̂s + τs (ε)− η)] ds

≤ |E| sup
s∈E

[ωs (n̂s + τs (ε))− ωs (n̂s + τs (ε)− η)]

Since E is compact while ωs (n̂s + τs(ε))−ωs (n̂s + τs(ε)− η) is continuous and strictly negative, the supre-

mum is strictly negative, giving hε′(N) < hε(N).
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We next establish that for ε > 0, hε(N) is strictly positive and continuous in N . The fact that hε (N) is

strictly increasing in ε and h0(N) = 0 implies that hε(N) is strictly positive when ε > 0. Further, continuity

in N follows from the continuity of n̂(N), τs (ε,N), z (q,N), λ(N), and µ (ε,N) in N and the continuity of

ωs (n̂s)− ωs (n̂s + τ) in τ .

Claim A.23 Suppose that there is a unique solution, n∗. Then for any ε > 0, there is an η > 0 such that

for any n ∈ N , |Π(n)−Π(n∗)| < η implies
∫
s∈S |ns − n

∗
s| ds < ε.

Proof. Fix ε > 0. Let N∗ ≡
∫
s∈S n

∗
sds and let n̂(N) ≡ arg maxn∈N (N) Π(n). Using Lemma A.19, there is a

γ > 0 such that |N −N∗| < γ implies that
∫
s∈S |n

∗
s − n̂s(N)| ds < ε

2 . Define

J(ε,N) = inf
n∈N (N)

Π(n∗)−Π(n) subject to

∫
s∈S
|ns − n∗s| ds ≥ ε

We will show that there is a strictly-positive, uniform lower bound J(ε) on J(ε,N) for anyN ∈ [N∗ − γ,N∗ + γ].

Since Π(n∗) ≥ Π (n̂(N)), we have

J(ε,N) ≥ inf
n∈N (N)

Π (n̂(N))−Π(n) subject to

∫
s∈S
|ns − n∗s|ds ≥ ε

Relaxing the constraint delivers a lower bound. In particular, since
∫
s∈S |ns − n

∗
s| ds ≤

∫
s∈S |ns − n̂s(N)| ds+∫

s∈S |n̂s(N)− n∗s| ds, the constraint can be relaxed to
∫
s∈S |ns − n̂s(N)| ds ≥ ε −

∫
s∈S |n̂s(N)− n∗s| ds, and

since
∫
s∈S |n̂s(N)− n∗s| ds < ε

2 , a further relaxation is
∫
s∈S |ns − n̂s(N)| ds ≥ ε

2 . As a result,

J(ε,N) ≥ inf
n∈N (N)

Π (n̂(N))−Π (ns) subject to

∫
s∈S
|ns − n̂s(N)| ds ≥ ε

2

Using the previous lemma, this implies that J (ε,N) ≥ hε/2(N). Define the uniform lower bound

J (ε) ≡ inf
N∈[N∗−γ,N∗+γ]

J (ε,N)

≥ inf
N∈[N∗−γ,N∗+γ]

hε/2(N)

Since [N∗ − γ,N∗ + γ] is compact and hε/2(N) is continuous and strictly positive, the infimum achieves a

minimum which is strictly positive, i.e., J (ε) > 0, which further implies that J (ε,N) ≥ J (ε) > 0, ∀N ∈
[N∗ − γ,N∗ + γ]. To summarize, we have established that if Π (n∗)− Π(n) < J̄ (ε) and

∣∣∫ nsds−N∗∣∣ < γ

then
∫
s∈S |n− n

∗
s| ds < ε.

According to Lemma A.21, there is an η1 > 0 such that |Π(n)−Π(n∗)| < η1 implies that
∣∣∫
s∈S nsds−N

∗∣∣ <
γ. Together, these two results imply that if

|Π(n)−Π (n∗)| < η ≡ min {η1, J (ε)}
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then
∫
s∈S |n− n

∗
s| ds < ε.

A.3.2 Step 2: Convergence of the policy function

In this section, we show that if there is a unique solution to the limiting problem, then the appropriately

scaled policy function converges uniformly as ∆→ 0.

As in the proof of the Proposition 1, we use the line segments of length k or k × k squares to derive

bounds. In Proposition 1, the key step was to take the limit as ∆ → 0 for a given k and then take k → 0.

We cannot use that strategy here, because, if k is held fixed, as we take a limit ∆→ 0, neither the sequence

of strategies for the upper bound nor the sequence of strategies for the lower bound converge to n∗. Instead,

the key trick here is, as we take ∆→ 0, to let k approach zero as well. Specifically, we define a function the

sequence K(∆) converges to zero, but more slowly than does ∆ in a sense described below. The fact that

k approaches zero as well ensures uniform convergence of the (appropriately scaled) policy function.

Let Ik be the set of line segments of length k or squares of size k × k, so that S =
⋂
i∈Ik
Ski .

Let Π∆(O) be the profit a firm would get in economy ∆ if it chooses a set of plants O. For a vector

N = {Ni}i∈Ik , define

Uk,∆(N) ≡ sup
O

Π∆ (O) subject to
∣∣∣O ∩ Ski ∣∣∣ = Ni

to be profit in economy ∆ when the policy is constrained so that the firm places Ni plants in Ski , ∀i ∈ Ik.
In addition, define

n̂k,∆ (N) ≡ arg max
n

Π (n) subject to

∫
s∈Ski

nsds = ∆dNi

to be the optimal policy in the limiting economy under the constraints that a measure ∆dNi of plants is

placed in Ski .

For any k, ∆, and any N = {Ni}i∈Ik , define Ūk,∆(N) and Uk,∆(N) to be upper and lower bounds on

the profit a firm could achieve in economy ∆ if it chose to place Ni plants in Ski :

Ūk,∆ (N) ≡
∑
i∈Ik
−Rki ∆dNi + z

q,∆d
∑
ı̃∈Ik

Nı̃

ε−1 ∑
i∈Ik

D̄k
i b̄
k
iNi∆

dg

(
kd

∆dNi

)
+ z (q, 0)ε−1 D̄b̄kd−3

∫ k

0
t

(
δ

∆

)1−ε
dk

Uk,∆ (N) ≡
∑
i∈Ik
−R̄ki ∆dNi + z

q,∆d
∑
ı̃∈Ik

Nı̃

ε−1 ∑
i∈Ik

Dk
i b
k
iNi∆

dg

(
ρ (Ni)

kd

∆dNi

)

It follows from the same arguments of Claims A.11 and A.15 that

Uk,∆ (N) ≤ Uk,∆ (N) ≤ Ūk,∆ (N)

DefineK(∆) to be an increasing function that is increasing more slowly than ∆, so that lim∆→0K(∆) = 0
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but lim∆→0K(∆)d−3∆ = 0, and 1
K(∆) is an integer, e.g., K(∆) =

⌈
∆−1/3

⌉−1
. One implication is that

lim∆→0
∆

K(∆) = lim∆→0K(∆)2−dK(∆)d−3∆ = 0.

Lemma A.24 Fix ε > 0. There exists a ∆̄ > 0 such that for any ∆ < ∆̄ and any N = {Ni}i∈IK(∆) such

that
∑

i∈IK(∆) Ni ≤ 2N̄
∆d , ∣∣∣ŪK(∆),∆ (N)− UK(∆),∆ (N)

∣∣∣ < ε

Proof. Fix N, and let ni = ∆d

kd Ni. Then we have

∣∣∣Ūk,∆(N)− Uk,∆(N)
∣∣∣ ≤ kd

∑
i

−niRki + z

(
qj , k

d
∑
i

ni

)ε−1

D̄k
i b̄
k
i nig

(
1

ni

)
+z (qj , 0)ε−1 D̄b̄kd−3

∫ k

0
t

(
δ

∆

)1−ε
dδ

−kd
∑
i

−niR̄ki + z

(
qj , k

d
∑
i

ni

)ε−1

Dk
i b
k
i nig

(
ρ

(
kd

∆d
ni

)
1

ni

)
This can be rearranged as∣∣∣Ūk,∆ (N)− Uk,∆ (N)

∣∣∣ = Ak,∆1 (N) +Ak,∆2 (N) +Ak,∆3 (N)

where

Ak,∆1 (N) ≡ z(qj , 0)ε−1D̄b̄kd−3

∫ k

0
t

(
δ

∆

)1−ε
dδ

Ak,∆2 (N) ≡ kd
∑
i

−ni (Rki − R̄ki )+ z

qj , kd∑
ı̃∈Ik

nı̃

ε−1 (
D̄k
i b̄
k
i −Dk

i b
k
i

)
nig

(
1

ni

)
Ak,∆3 (N) ≡ kd

∑
i

z
(
qj , k

d
∑
i

ni

)ε−1

Dk
i b
k
i ni

[
g

(
1

ni

)
− g

(
ρ

(
kd

∆d
ni

)
1

ni

)]
We bound each of these three terms separately. First, note that since lim∆→0K(∆)d−3∆ = 0, there is a

∆̄1 small enough so that ∆ < ∆̄1 implies that K(∆)d−3∆ < 1

z(qj ,0)ε−1D̄b̄
∫∞
0 t(δ̃)

1−ε
dδ̃

ε
3 . This means that for
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∆ < ∆̄1:

A
K(∆),∆
1 (N) = z(qj , 0)ε−1D̄b̄K(∆)d−3

∫ K(∆)

0
t

(
δ

∆

)1−ε
dδ

= z(qj , 0)ε−1D̄b̄K(∆)d−3∆

∫ K(∆)
∆

0
t
(
δ̃
)1−ε

dδ̃

<

(
z (qj , 0)ε−1 D̄b̄

∫ K(∆)
∆

0
t
(
δ̃
)1−ε

dδ̃

)
1

z (qj , 0)ε−1 D̄b̄
∫∞

0 t
(
δ̃
)1−ε

dδ̃

ε

3

=

∫ K(∆)
∆

0 t
(
δ̃
)1−ε

dδ̃∫∞
0 t

(
δ̃
)1−ε

dδ̃

ε

3

≤ ε

3

where the second line used the change of variables δ̃ = δ
∆ .

We turn next to the second term, Ak,∆2 (N). Since Rs, Ds, and bs are uniformly continuous, there is a k̄

such that k < k̄ implies R̄ki −Rki ≤ ε
6(2N̄)

and D̄k
i b̄
k
i −Dk

i b
k
i <

1
z(qj ,0)ε−1|S|

ε
6 . Thus k < k̄ implies

Ak,∆2 (N) = kd
∑
i

−ni (Rki − R̄ki )+ z

(
qj , k

d
∑
i

ni

)ε−1 (
D̄k
i b̄
k
i −Dk

i b
k
i

)
nig

(
1

ni

)
≤ kd

∑
i

{
ni

ε

6
(
2N̄
) +

z
(
qj , k

d
∑

i ni
)ε−1

z (qj , 0)ε−1 |S|
ε

6
nig

(
1

ni

)}
≤ ε

6
+
ε

6

=
ε

3

where the third line follows from kd
∑

i ni = ∆d
∑

iNi ≤ 2N̄ , z
(
qj , k

d
∑

i ni
)
≤ z (qj , 0), and nig

(
1
ni

)
≤ 1.

If ∆̄2 is such that ∆ < ∆̄2 implies that K (∆) < k̄, ∆ < ∆̄2 implies that A
K(∆),∆
2 (N) < ε

3 .

We turn next to the third term. Using z
(
qj , k

d
∑

i ni
)ε−1

Dk
i b
k
i ≤ z (qj , 0)ε−1 D̄b̄ along with g

(
1
ni

)
≥

g
(
ρ
(
kd

∆dni

)
1
ni

)
(which follows from the fact that g is increasing and ρ (·) ≤ 1), we have

Ak,∆3 (N) = kd
∑
i

z
(
qj , k

d
∑
i

ni

)ε−1

Dk
i b
k
i ni

[
g

(
1

ni

)
− g

(
ρ

(
kd

∆d
ni

)
1

ni

)]
≤ z (qj , 0)ε−1 D̄b̄kd

∑
i

ni

[
g

(
1

ni

)
− g

(
ρ

(
kd

∆d
ni

)
1

ni

)]
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Let u > 0 be small enough so that such that ug
(

1
u

)
< 1

z(qj ,0)ε−1D̄b̄
ε
3 . Since ng

(
1
n

)
is increasing, we have for

any ni ≤ u and any ∆,

ni

[
g

(
1

ni

)
− g

(
ρ

(
kd

∆d
ni

)
1

ni

)]
≤ nig

(
1

ni

)
≤ 1

z (qj , 0)ε−1 D̄b̄

ε

3

Let ∆̄3 be such that ∆ < ∆̄3 implies 1 − ρ
(
K(∆)d

∆d u
)
≤ 1

z(qj ,0)ε−1D̄b̄g′(0)
ε
3 . Such a ∆̄3 exists because

limx→∞ ρ(x) = 1. For i such that ni > u, we can then bound the term using the fact that g is con-

cave, which implies g
(

1
n

)
≤ g

(
ρ (·) 1

n

)
+ g′

(
ρ (·) 1

n

)
1
ni

[1− ρ (·)] ≤ g
(
ρ (·) 1

n

)
+ g′(0) 1

ni
[1− ρ (·)]. Together,

these imply for ni > u and ∆ < ∆̄3

ni

[
g

(
1

ni

)
− g

(
ρ

(
K (∆)d

∆d
ni

)
1

ni

)]
≤ g′(0)

[
1− ρ

(
K (∆)d

∆d
ni

)]

≤ g′(0)

[
1− ρ

(
K (∆)d

∆d
u

)]
≤ g′(0)

1

z (qj , 0)ε−1 D̄b̄g′(0)

ε

3

where the second inequality used the fact that ρ is increasing and ni ≥ u. Together, these imply that for

any ni and ∆ < ∆̄3,

ni

[
g

(
1

ni

)
− g

(
ρ

(
K (∆)d

∆d
ni

)
1

ni

)]
≤ 1

z (qj , 0)ε−1 D̄b̄

ε

3

As a result, if ∆ < ∆̄3, then A
K(∆),∆
3 (N) ≤ ε

3 .

These three results together imply that if ∆ < min
{

∆̄1, ∆̄2, ∆̄3

}
, then∣∣∣Ūk,∆ (N)− Uk,∆ (N)

∣∣∣ < ε

Lemma A.25 For any m > 0, there is an ∆̄ > 0 such that ∆ < ∆̄ implies ∆d
∣∣O∆∗∣∣ ≤ N̄ + m for any

optimal choice O∆∗.

Proof. Fix m > 0. For any k, ∆, consider a vector N = {Ni}i∈Ik , along with the alternative vector

Ñ =
{
Ñi

}
i∈Ik

where Ñi = min
{
Ni,
⌈
kd

∆d n̄
⌉}

. We first derive an upper bound on Ūk,∆ (N) − Ūk,∆
(
Ñ
)

.

Define ni = ∆d

kd Ni and ñi = ∆d

kd Ñi. Define ak,∆ ≡ ∆d

n̄kd

⌈
kd

∆d n̄
⌉
, so that ñi = min

{
ni, a

k,∆n̄
}

. There is a ∆̄1

such that ∆ < ∆̄1 implies aK(∆),∆ < 1 + m
3N̄

.
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Noting that z
(
qj , k

d
∑

i ñi
)
≥ z

(
qj , k

d
∑

i ni
)
, (and using the shorthand z̃ ≡ z

(
qj , k

d
∑

i ñi
)
), we have:

Ūk,∆ (N)− Ūk,∆
(
Ñ
)

= kd
∑
i∈Ik

−niRki + z

(
qj , k

d
∑
i

ni

)ε−1

D̄k
i b̄
k
i κ (ni)


+z (qj , 0)ε−1 D̄b̄

1

k

∫ k

0
t

(
δ

∆

)1−ε
dδ − Ūk,∆

(
Ñ
)

≤ kd
∑
i∈Ik

{
−niRki + z̃ε−1D̄k

i b̄
k
i κ (ni)

}
+ z (qj , 0)ε−1 D̄b̄

1

k

∫ k

0
t

(
δ

∆

)1−ε
dδ − Ūk,∆

(
Ñ
)

= kd
∑
i∈Ik

{
−niRki + z̃ε−1D̄k

i b̄
k
i κ (ni)

}
− kd

∑
i∈Ik+

{
−ñiRki + z̃ε−1D̄k

i b̄
k
i κ (ñi)

}
= kd

∑
i∈Ik+

{
−
(
ni − ak,∆n̄

)
Rki + z̃ε−1D̄k

i b̄
k
i

[
κ (ni)− κ

(
ak,∆n̄

)]}

where Ik+ is the set of squares such that Ni > Ñi (and hence ni > ñi = ak,∆n̄). The concavity

of κ and ak,∆ ≥ 1 implies that κ (ni) − κ
(
ak,∆n̄

)
≤ κ′

(
ak,∆n̄

) (
ni − ak,∆n̄

)
≤ κ′ (n̄)

(
ni − ak,∆n̄

)
=

1
2

R

z(q,0)ε−1D̄b̄

(
ni − ak,∆n̄

)
. This gives

Ūk,∆ (N)− Ūk,∆
(
Ñ
)
≤ kd

∑
i∈Ik+

{
−
(
ni − ak,∆n̄

)
Rki +

1

2
z̃ε−1D̄k

i b̄
k
i

R

z (q, 0)ε−1 D̄b̄

(
ni − ak,∆n̄

)}

≤ kd
∑
i∈Ik+

[
−1 +

1

2

]
R
(
ni − ak,∆n̄

)
= −R

2
kd
∑
i∈Ik+

(
ni − ak,∆n̄

)

In particular, if ∆d
∑

i∈Ik Ni ≥ N̄ +m and ∆ < ∆̄1, then

K(∆)d
∑

i∈IK(∆)+

(
ni − aK(∆),∆n̄

)
≥ K(∆)d

∑
i∈IK(∆)

(
ni − aK(∆),∆n̄

)
= K(∆)d

∑
i∈IK(∆)

ni − aK(∆),∆N̄

= ∆d
∑

i∈IK(∆)

Ni − aK(∆),∆N̄

≥ N̄ +m− aK(∆),∆N̄

≥ N̄ +m−
(

1 +
m

3N̄

)
N̄

≥ 2

3
m
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which would imply

ŪK(∆),∆ (N)− ŪK(∆),∆
(
Ñ
)
≤ −R

3
m

Let ∆̄2 > 0 be such that for any ∆ < ∆̄2 and any Ñ =
{
Ñi

}
i∈IK(∆)

such that
∑

i∈IK(∆) Ñi ≤ 2N̄
∆d ,

∣∣∣ŪK(∆),∆
(
Ñ
)
− UK(∆),∆

(
Ñ
)∣∣∣ < R

4
m

. The existence of Such a ∆ follows from Lemma A.24.

For any ∆ < ∆̄ = min{∆̄1,∆2}, let O∆∗ be among the optimal solutions. Define N∆=
{
N∆
i

}
i∈IK(∆) to be

such that N∆
i =

∣∣∣O∆∗ ∩ SK(∆)
i

∣∣∣. Similarly, define Ñ∆ =
{
Ñ∆
i

}
i∈IK(∆)

where Ñ∆
i = min

{
N∆
i ,
⌈
K(∆)d

∆d n̄
⌉}

.

Toward a contradiction, suppose that ∆d
∣∣O∆∗∣∣ ≥ N̄ +m. The first step of the proof implies

ŪK(∆),∆
(
N∆

)
− ŪK(∆),∆

(
Ñ∆

)
≤ −R

3
m

Finally, we have that Π∆
(
O∆∗) = UK(∆),∆

(
N∆

)
≤ ŪK(∆),∆

(
N∆

)
, and UK(∆),∆

(
Ñ∆

)
≥ UK(∆),∆

(
Ñ∆

)
.

Together, these imply that if ∆ < ∆̄,

UK(∆),∆
(
N∆

)
− UK(∆),∆

(
Ñ∆

)
≤ ŪK(∆),∆

(
N∆

)
− UK(∆),∆

(
Ñ∆

)
= ŪK(∆),∆

(
N∆

)
− ŪK(∆),∆

(
Ñ∆

)
+ ŪK(∆),∆

(
Ñ∆

)
− UK(∆),∆

(
Ñ∆

)
≤ −R

3
m+

R

4
m

< 0

Therefore, O∆∗ cannot be optimal, a contradiction.

Lemma A.26 Fix ε > 0. There exists a ∆̄ such that for any ∆ < ∆̄ and any N = {Ni}i∈IK(∆) such that∑
i∈IK(∆) Ni ≤ 2N̄ , ∣∣∣UK(∆),∆ (N)−Π

(
n̂K(∆),∆ (N)

)∣∣∣ < ε

Proof. The first step in this proof is to show that for any k, ∆, and any admissible N = {Ni}i∈Ik , we can

bound
∣∣Uk,∆(N)−Π

(
n̂k,∆(N)

)∣∣. We already know that

Uk,∆ (N) ≤ Uk,∆ (N) ≤ Ūk,∆ (N)

In addition, we have

Uk,∆ (N) ≤ Π
(
n̂k,∆ (N)

)
≤ Ūk,∆ (N)
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because

Π
(
n̂k,∆ (N)

)
= max

n

∫
s∈S

−Rsns +Dsbsz

q,∑
i∈Ik

Ni

ε−1

κ (ns)

 ds subject to

∫
s∈Ski

nsds = Ni

≤ max
n

∫
s∈S

−Rki ns + D̄k
i b̄
k
i z

q,∑
i∈Ik

Ni

ε−1

κ (ns)

 ds subject to

∫
s∈Ski

nsds = Ni

≤ Ūk,∆ (N)

and

Π
(
n̂k,∆ (N)

)
= max

n

∫
s∈S

−Rsns +Dsbsz

q,∑
i∈Ik

Ni

ε−1

κ (ns)

 ds subject to

∫
s∈Ski

nsds = Ni

≥ max
n

∫
s∈S

−R̄ki ns +Dk
i b
k
i z

q,∑
i∈Ik

Ni

ε−1

κ (ns)

 ds subject to

∫
s∈Ski

nsds = Ni

≥ Uk,∆ (N)

Together, these imply that∣∣∣UK(∆),∆ (N)−Π
(
n̂K(∆),∆ (N)

)∣∣∣ ≤ ∣∣∣ŪK(∆),∆ (N)− UK(∆),∆ (N)
∣∣∣

Finally, Lemma A.24 gives that there is a ∆̄ such that
∣∣∣ŪK(∆),∆ (N)− UK(∆),∆ (N)

∣∣∣ ≤ ε, and hence

∣∣∣UK(∆),∆ (N)−Π
(
n̂K(∆),∆ (N)

)∣∣∣ < ε

Lemma A.27 For any ε > 0, there is a ∆̄ small enough so that ∆ < ∆̄ implies

∑
i∈IK(∆)

∣∣∣∣∣∆d
∣∣∣O∆∗ ∩ SK(∆)

i

∣∣∣− ∫
s∈SK(∆)

i

n∗sds

∣∣∣∣∣ < ε

Proof. For any ∆, define n∆∗ ≡ arg maxn Π (n) subject to
∫
s∈SK(∆)

i

nsds = ∆d
∣∣∣O∆∗ ∩ SK(∆)

i

∣∣∣.
We first show that, for any η > 0, there is an ∆̄ small enough so that ∆ < ∆̄ implies that

∣∣Π (n∗)−Π
(
n∆∗)∣∣ ≤
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η. For any ∆, optimality implies both

0 ≤ Π (n∗)−Π
(
n∆∗)

0 ≤ UK(∆),∆
({∣∣∣O∆∗ ∩ SK(∆)

i

∣∣∣}
i∈IK(∆)

)
− UK(∆),∆

({
1

∆d

∫
s∈SK(∆)

i

n∗sds

}
i∈IK(∆)

)

Adding these together and rearranging gives

0 ≤ Π (n∗)−Π
(
n∆∗)+ UK(∆),∆

({∣∣∣O∆∗ ∩ SK(∆)
i

∣∣∣}
i∈IK(∆)

)
− UK(∆),∆

({
1

∆d

∫
s∈SK(∆)

i

n∗sds

}
i∈IK(∆)

)

= Π (n∗)− UK(∆),∆

({
1

∆d

∫
s∈SK(∆)

i

n∗sds

}
i∈IK(∆)

)
−Π

(
n∆∗)+ UK(∆),∆

({∣∣∣O∆∗ ∩ SK(∆)
i

∣∣∣}
i∈IK(∆)

)
≤

∣∣∣∣∣Π (n∗)− UK(∆),∆

({
1

∆d

∫
s∈SK(∆)

i

n∗sds

}
i∈IK(∆)

)∣∣∣∣∣+
∣∣∣Π (n∆∗)− UK(∆),∆

({∣∣∣O∆∗ ∩ SK(∆)
i

∣∣∣}
i∈IK(∆)

)∣∣∣
Note that

∫
s∈S n

∗
sds ≤ N̄ and, for sufficiently small ∆, ∆d

∣∣O∆∗∣∣ ≤ 2N̄ (the latter uses Lemma A.25 with

m = N̄). Lemma A.26 therefore implies that there is a ∆̄ such that ∆ < ∆̄ implies that each term is less

than η
2 . As a result, 0 ≤ Π (n∗)−Π

(
n∆∗) ≤ η.

Claim A.23 states that for any ε > 0, there is an η such that
∣∣Π (n∗)−Π

(
n∆∗)∣∣ < η implies

∥∥n∗ − n∆∗∥∥ <
ε. Thus there is an ∆̄ small enough so that ∆ < ∆̄ implies that

∣∣Π (n∗)−Π
(
n∆∗)∣∣ < η and hence∥∥n∗ − n∆∗∥∥ < ε. Finally, the definition of n∆∗ implies

∫
s∈SK(∆)

i

n∆∗
s ds = ∆d

∣∣∣O∆∗ ∩ SK(∆)
i

∣∣∣. Thus if ∆ < ∆̄,

so we have

∑
i∈IK(∆)

∣∣∣∣∣∆d
∣∣∣O∆∗ ∩ SK(∆)

i

∣∣∣− ∫
s∈SK(∆)

i

n∗sds

∣∣∣∣∣ =
∑

i∈IK(∆)

∣∣∣∣∣
∫
s∈SK(∆)

i

n∆∗
s ds−

∫
s∈SK(∆)

i

n∗sds

∣∣∣∣∣
≤

∑
i∈IK(∆)

∫
s∈SK(∆)

i

∣∣n∆∗
s − n∗s

∣∣ ds
=

∥∥n∆∗ − n∗
∥∥

< ε

Proposition A.28 Consider any Jordan measurable set A. For any ε, there is a ∆̄ such that ∆ < ∆̄

implies that
∣∣∆d

∣∣O∆∗ ∩ A
∣∣− ∫s∈A n∗sds∣∣ < ε.

Proof. Let Īk(A) =
{
i ∈ Ik such that Ski ∩ A 6= ∅

}
be the smallest collection of squares/segments that

contains A, and let Ik(A) =
{
i ∈ Ik such that Ski ⊆ A

}
be the largest collection contained in A. Let

Bk(A) = ∪i∈Īk(A)\Ik(A)Ski be the union of segments/squares that contains points in both A and its comple-

ment.
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Consider and optimal solution O∆∗ for economy ∆. For any k, define Nk∆
i ≡

∣∣O∆∗ ∩ Ski
∣∣ to be the

number of plants in segment/square Ski . We have∑
i∈Ik(A)

Nk∆
i ≤

∣∣O∆∗ ∩ A
∣∣ ≤ ∑

i∈Īk(A)

Nk∆
i

By multiplying through by ∆d and subtracting
∫
s∈A n

∗
sds from each side, the left hand inequality can be

expressed as

∆d
∣∣O∆∗ ∩ A

∣∣− ∫
s∈A

n∗sds ≥
∑

i∈Ik(A)

∆dNk∆
i −

∫
s∈A

n∗sds

≥
∑

i∈Ik(A)

(
∆dNk∆

i −
∫
s∈Ski

n∗sds

)
−
∫
s∈Bk(A)

n∗sds

≥ −
∑

i∈Ik(A)

∣∣∣∣∣∆dNk∆
i −

∫
s∈Ski

n∗sds

∣∣∣∣∣−
∫
s∈Bk(A)

n∗sds

≥ −
∑

i∈Īk(A)

∣∣∣∣∣∆dNk∆
i −

∫
s∈Ski

n∗sds

∣∣∣∣∣−
∫
s∈Bk(A)

n∗sds

Similarly, by multiplying through by ∆d and subtracting
∫
s∈A n

∗
sds from each side, the right hand inequality

can be expressed as

∆d
∣∣O∆∗ ∩ A

∣∣− ∫
s∈A

n∗sds ≤
∑

i∈Īk(A)

∆dNk∆
i −

∫
s∈A

n∗sds

≤
∑

i∈Īk(A)

(
∆dNk∆

i −
∫
s∈Ski

n∗sds

)
+

∫
s∈Bk(A)

n∗sds

≤
∑

i∈Īk(A)

∣∣∣∣∣∆dNk∆
i −

∫
s∈Ski

n∗sds

∣∣∣∣∣+

∫
s∈Bk(A)

n∗sds

Together, these give∣∣∣∣∆d
∣∣O∆∗ ∩ A

∣∣− ∫
s∈A

n∗sds

∣∣∣∣ ≤ ∑
i∈Īk(A)

∣∣∣∣∣∆dNk∆
i −

∫
s∈Ski

n∗sds

∣∣∣∣∣+

∫
s∈Bk(A)

n∗sds

≤
∑
i∈Ik

∣∣∣∣∣∆dNk∆
i −

∫
s∈Ski

n∗sds

∣∣∣∣∣+ n̄
∣∣∣Bk(A)

∣∣∣
In particular this bound holds for any ∆, K(∆) pair.
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From Lemma A.27, there is a ∆̄1 small enough so that ∆ < ∆̄1 implies that

∑
i∈IK(∆)

∣∣∣∣∣∆dN
K(∆)∆
i −

∫
s∈SK(∆)

i

n∗sds

∣∣∣∣∣ < ε

2
.

Further, since A is Jordan measurable, limk→0 Bk(A) = 0, so there is a ∆̄2 small enough so that ∆ < ∆̄2

implies
∣∣BK(∆)(A)

∣∣ < 1
n̄
ε
2 . Together, these imply that ∆ < min

{
∆̄1, ∆̄2

}
implies that∣∣∣∣∆d

∣∣O∆∗ ∩ A
∣∣− ∫

s∈A
n∗sds

∣∣∣∣ < ε.

A.4 Additional Proofs

We formally state and prove here the additional result, quoted in the text, about the relative marginal

efficiency of distribution.

Lemma A.29 Consider two firms with z1 < z2 and two locations with Rs < Rŝ. Then, if n1s, n1ŝ, n2s,

n2ŝ > 0,
κ′(n2s)

κ′(n1s)
>
κ′(n2ŝ)

κ′(n1ŝ)
.

Proof. Since λ2 > λ1, R+λ2
R+λ1

> 1, so R+λ2
R+λ1

is decreasing in R. Hence, we have that

κ′(n2s)

κ′(n1s)
=
zε−1

1

zε−1
2

Rs + λ2

Rs + λ1
>
zε−1

1

zε−1
2

Rŝ + λ2

Rŝ + λ1
=
κ′(n2ŝ)

κ′(n1ŝ)
.

A.4.1 Proof of Proposition 6

Proof. ns (z) denotes the density of plants a firm with productivity z places in location s. The first order

condition (4) implies that ns (z) = 0 if
Rs+λj
xszε−1 > κ′(0). Since λj > 0,

lim
z→0

R+ λj
xzε−1

≥ lim
z→0

R

xzε−1
=∞,

and, if limz→∞
λj
zε−1 =∞,

lim
z→∞

R+ λj
xzε−1

=
1

x
lim
z→∞

λj
zε−1

=∞.

The result follows from the fact that κ′ is continuous, strictly decreasing, and κ′(0) <∞ if limδ→∞
δd

t(δ)ε−1 = 0

by Lemma 3.
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A.4.2 Proof of Lemma 7

Proof. For firm j, variable profit in location s is xsz
ε−1
j κ(njs), so with a markup of ε

ε−1 , the expenditure

on labor in s is Wsljs = (ε − 1)xsz
ε−1
j κ (njs). Since the wage Ws = W for all s ∈ S, j’s total employment

is Lj = ε−1
W

∫
xsz

ε−1
j κ (njs) ds = σ

W λj . If N1 = N2 = 0, then L1 = L2 = 0. Otherwise, by Lemma 4,
λ2

zε−1
2

> λ1

zε−1
1

, which implies λ2 > λ1, and so L2 > L1.

A.5 Proof of Proposition 8: Aggregation

In this appendix we prove proposition Proposition 8 and show some additional aggregate properties of the

industry equilibrium defined in Section 3.

A.5.1 The Local Price Index

The price that firm j sets in location s is

pjs =
ε

ε− 1
min
o∈Oj

{
WoT (δso)

BoZ (q,Nj)

}
In a small enough neighborhood of location s, economic activity is locally uniform. Thus each firm will choose

to have catchment areas that are locally uniform regular hexagons. Among firms with the same effective

productivity Z, the pattern of plant locations will be the same up to translation. These translations are

such that if we integrate across such firms, the total measure of plants at each point will be uniform. An

implications is that, for consumers in location s and firms with effective productivity Z, the fraction of those

firms that have plants closer than distance δ to those consumers is the same as the fraction of locations in

such a firm’s catchment area that are closer than distance δ to the plant at the center of the catchment

area.

Given this we now derive an expression for the ideal price index at a location. As in the proof of the

main proposition, we will proceed by dividing the economy into k× k squares in which economic activity is

uniform, taking the limit as ∆→ 0, and then taking the limit as k → 0. We ignore boundary issues because

these will disappear when we take the limit as ∆→ 0.

The ideal price index at location s satisfies P 1−ε
s =

∫
p1−ε
js dj. Consider a k×k square with uniform local

economic activity, so that catchment areas are uniform hexagons. We can compute the local ideal price

index at any point in that k × k square by integrating over all firms in the economy.

Let Nji be the number of plants that firm j places in the square. Then for each plant, the distance to

the furthest point in the catchment area is ψ
√
k2/Nji, and among points that are distance δ from the plant,

the fraction $

(
δ

ψ
√
k2/Nji

)
are in the plant’s catchment area (the remainder are served by other plants).43

43Recall that $(x) is defined as that fraction of a circle of radius x that intersects with the interior of a hexagon with side
length 1.
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The ideal price index can therefore be expressed as

(
P k∆
s

)1−ε
=

∫ ∫ ψ√k2/Nji
0 $

(
δ

ψ
√
k2/Nji

)[
ε
ε−1

WsT (δ)
BsZ(q,Nj)

]1−ε
2πδdδ

∫ ψ√k2/Nji
0 $

(
δ

ψ
√
k2/Nji

)
2πδdδ

dj

Using T (δ) = t
(
δ
∆

)
and Z (q,N) ≡ z

(
q,∆dN

)ε−1
gives

(
P k∆
s

)1−ε
=

∫ ∫ ψ√k2/Nji
0 $

(
δ

ψ
√
k2/Nji

)[
ε
ε−1

Wst( δ∆)
Bsz(q,∆dNj)

]1−ε
2πδdδ

∫ ψ√k2/Nji
0 $

(
δ

ψ
√
k2/Nji

)
2πδdδ

dj

Using nji =
∆2Nji
k2 and using a change of variables gives

(
P k∆
s

)1−ε
=

(
ε

ε− 1

Ws

Bs

)1−ε ∫
zε−1
j

∫ ψn−1/2
ji

0 $

(
δ̃

ψn
−1/2
ji

)
t
(
δ̃
)1−ε

2πδ̃dδ̃

∫ ψn−1/2
ji

0 $

(
δ̃

ψn
−1/2
ji

)
2πδ̃dδ̃

dj

Taking the limits as ∆→ 0 and k → 0 gives

P 1−ε
s =

(
ε

ε− 1

Ws

Bs

)1−ε ∫
zε−1
j

∫ ψn−1/2
js

0 $

(
δ̃

ψn
−1/2
js

)
t
(
δ̃
)1−ε

2πδ̃dδ̃

∫ ψn−1/2
js

0 $

(
δ̃

ψn
−1/2
js

)
2πδ̃dδ̃

dj

=

(
ε

ε− 1

Ws

Bs

)1−ε ∫
zε−1
j n

∫ ψn
−1/2
js

0
$

(
δ̃

ψn
−1/2
js

)
t
(
δ̃
)1−ε

2πδ̃dδ̃dj

=

(
ε

ε− 1

Ws

Bs

)1−ε ∫
zε−1
j κ (njs) dj

Define Zε−1
s ≡

(∫
zε−1
j κ (njs) dj

)
Ps =

ε

ε− 1

Ws

BsZs
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With this, we can simplify the expression for local profitability, xs:

xs =
(ε− 1)ε−1

εε
LscsP εs (Bs/Ws)

ε−1 =
(ε− 1)ε−1

εε
LsPscs

(Bs/Ws)
ε−1

P 1−ε
s

=
(ε− 1)ε−1

εε
LsPscs

(Bs/Ws)
ε−1(

ε
ε−1

Ws
BsZs

)1−ε

=
1

ε
LsPscs (Zs)1−ε

=
1

ε
Ls

ε

ε− 1

Ws

BsZs
cs (Zs)1−ε

=
1

ε− 1

WsLs
BsZεs

cs

A.5.2 Market clearing for Space

We use the same approach to characterize the total amount of local real estate used by plants. Consider a

square of size k × k. The fraction of of land devoted to commercial real estate is

N k∆
s = ξ

1

k2

∫
s∈Ski

∫
1 {j has plant in s} djds = ξ

1

k2

∫
Nji (j) dj

where Nji is the number of plants the firm places in square Ski . Using ξ = ∆2, this is

N k∆
s = ∆d 1

k2

∫
Nk
i (j) dj

Using nji =
∆2Nji
k2

N k∆
s =

∫
njidj

Taking the limit as ∆→ 0 and k → 0 gives

Ns =

∫
njsdj

A.5.3 Consumption

We derive here an expression for the local consumption bundle. Labor used by firm j in a plant located in

o to produce cjsLs units of output for consumption by households in location s is

ljos(δ) =
T (δos)

BoZj
cjsLs =

T (δos)

BoZj
csP

ε
s p
−ε
js Ls =

T (δos)

BsZj
csP

ε
s

[
ε

ε− 1

WoT (δos)

BsZj

]−ε
Ls

=

(
ε

ε− 1

)−ε 1

Wo

(
WoT (δos)

BoZj

)1−ε
csP

ε
sLs

We again use the approach of studying a k × k square in which economic activity is uniform. In such a
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square, firm j sets up Nji plants, each with a catchment area that is a regular hexagon of size 1/Nji (again,

ignoring boundary issues, which disappear in the limit as ∆→ 0. If the density of employment in the square

is Lk∆
i and consumption per capita is ck∆

i , then, per unit of space, total employment of firm in the square

is then

1

k2
Nji

∫ ψ
√
k2/Nji

0

[(
ε

ε− 1

)−ε 1

W k∆
i

(
W k∆
i T (δ)

Bk∆
i Zj

)1−ε

ck∆
i

(
P k∆
i

)ε
Lk∆
i

]
$

(
δ

ψ
√
k2/Nji

)
2πδdδ

Employment across all firms per unit of space is then

Lk∆
i =

∫
1

k2
Nji

∫ ψ
√
k2/Nji

0

[(
ε

ε− 1

)−ε 1

W k∆
i

(
W k∆
i T (δ)

Bk∆
i Zj

)1−ε

ck∆
i

(
P k∆
i

)ε
Lk∆
i

]
$

(
δ

ψ
√
k2/Nji

)
2πδdδdj

Using the change of variables δ̃ = δ/∆ and nji = ∆2

k2 Nji, this is
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Taking the limit as ∆→ 0 and k → 0 gives

Ls =

∫ [(
ε

ε− 1

)−ε 1

Ws

(
Ws

BsZj

)1−ε
cs (Ps)

ε Ls

]
κ(njs)dj

=

[(
ε

ε− 1

)−ε 1
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(
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)1−ε
cs (Ps)

ε Ls

]
Zε−1
s

Combining this with the expression for the price level Ps = ε
ε−1

Ws
BsZs and simplifying gives

cs = BsZs

B Rents and Density

Our theory relates the sorting of firms to local rent. Data on rent is incomplete and available at irregular

geographic units, so our empirical exercises relate sorting to population density. Nevertheless, we can test

empirically whether locations with higher population density have higher rent. We borrow rent data from

Zillow for the year 2018. For population density, we use the 2012-2016 population estimate provided in the

American Community Survey (ACS) dataset (Manson et al. (2021)). For each zipcode and county, Zillow

provides an estimate of the rent per square foot. The rent per square foot is a preferable measure of rent
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than just the average rent in a location as the former controls for differences in housing size across locations,

while the latter does not. Figure B.1 shows how the rent per square foot of a location, measured at either

zip code or county levels, increases with the location population density.

Figure B.1: Rents across space

Notes: The figure presents the binned rent per square foot of a location (zipcode or county) in 2018 as a function of the location
population density. Rent data comes from Zillow, while we use the 2012-2016 population estimate in the American Community Survey
(ACS) from Manson et al. (2021) to construct the population density measure.

C Sorting

In this section we perform several robustness checks to our sorting results.

Table V presents the results of regressing the average of the log of the average employment density

of each location, weighted by the number of establishments of a particular firm operating in a particular

industry in the location, on the log of the national size of the firm and industry fixed effects. The first panel

is the analogous to Figure 8 and presents the results as we vary M . Panels 2 to 7 use M = 12. The second

panel restricts the analysis to firms with at least X plants. The third panel adds to the second panel a

headquarters’ location fixed effect for each firm. The fourth panel restricts the analysis to industries where

there is a firm with at least X plants, and the fifth panel adds the fixed effect for the headquarters’ location.
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The sixth panel repeats the analysis by major industry. The last panel shows the robustness of the baseline

results to excluding the own firm contribution to employment density, alternative weighting schemes, and

to using only non-imputed data.
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Table V: Sorting: Firm Size and Local Density

(1) (2) (3) (4) (5)
ln L̄j ln L̄j ln L̄j ln L̄j ln L̄j

Baseline
lnLj 0.222*** 0.196*** 0.165*** 0.129*** 0.0952***

(0.00104) (0.00101) (0.000975) (0.000926) (0.000848)

Observations 3,645,763 3,665,497 3,670,994 3,672,721 3,673,053
R-squared 0.159 0.153 0.139 0.120 0.099
SIC8 FE Yes Yes Yes Yes Yes
M 3 6 12 24 48

Firms with at least X plants Baseline X = 10 X = 20 X = 50 X = 100
lnLj 0.165*** 0.134*** 0.132*** 0.135*** 0.146***

(0.000975) (0.00655) (0.00982) (0.0153) (0.0249)

Observations 3,670,994 11,203 4,904 1,892 876
R-squared 0.139 0.385 0.391 0.405 0.384
SIC8 FE Yes Yes Yes Yes Yes
M 12 12 12 12 12

Controlling for HQ location, firms with at least X plants X = 2 X = 10 X = 20 X = 50 X = 100
lnLj 0.0229*** 0.0347*** 0.0396*** 0.0516*** 0.0791**

(0.00171) (0.00563) (0.00863) (0.0159) (0.0350)

Observations 145,186 9,700 4,182 1,534 652
R-squared 0.705 0.665 0.676 0.693 0.664
SIC8 FE Yes Yes Yes Yes Yes
HQ Location FE Yes Yes Yes Yes Yes
M 12 12 12 12 12

Industries where largest firm has at least X plants Baseline X = 10 X = 20 X = 50 X = 100
lnLj 0.165*** 0.178*** 0.176*** 0.176*** 0.172***

(0.000975) (0.00109) (0.00119) (0.00140) (0.00164)

Observations 3,670,994 2,861,609 2,424,907 1,829,818 1,387,742
R-squared 0.139 0.114 0.102 0.091 0.080
SIC8 FE Yes Yes Yes Yes Yes
M 12 12 12 12 12

Controlling for HQ location, industries where largest firm has at least X plants Baseline X = 10 X = 20 X = 50 X = 100
lnLj 0.0229*** 0.0252*** 0.0244*** 0.0222*** 0.0201***

(0.00171) (0.00179) (0.00190) (0.00214) (0.00244)

Observations 145,186 124,065 106,163 81,372 62,957
R-squared 0.705 0.711 0.720 0.729 0.735
SIC8 FE Yes Yes Yes Yes Yes
HQ Location FE Yes Yes Yes Yes Yes
M 12 12 12 12 12

Baseline Excluding Own Unweighted Weighted by Non-imputed
Contribution Employment

lnLj 0.165*** 0.164*** 0.161*** 0.164*** 0.202***
(0.000975) (0.000975) (0.000974) (0.000981) (0.00111)

Observations 3,670,994 3,668,734 3,670,994 3,670,994 2,605,050
R-squared 0.139 0.138 0.138 0.139 0.169
SIC8 FE Yes Yes Yes Yes Yes
M 12 12 12 12 12

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: The table presents the results of regressing the log of the average employment density across all of the firm plants on the log
employment of the firm at the national level and industry fixed effects. The first panel presents the results as we vary M . Panels 2
to 7 use M = 12. The second panel restricts the analysis to firms with at least X plants. The third panel adds to the second panel
a headquarters’ location fixed effect for each firm. The fourth panel restricts the analysis to industries where there is a firm with at
least X plants, and the fifth panel adds the fixed effect for the headquarters’ location. The sixth panel repeats the analysis by major
industry. The last panel shows the robustness of the baseline results to excluding the own firm contribution to employment density,
alternative weighting schemes, and to using only non-imputed data.
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D The Largest Firm in Town

Table VI presents the results of regressing the log of the national size of the firm with most plants in a

location, Lj∗(s), on the log of the employment density of the location, Ls, and industry fixed effects. If there

is a tie in the identity of the firm with most plants in a location, we take the average of the log national

employment of the firms. The first panel presents our baseline results for different spatial resolutions M .

The second panel repeats the analysis but restricting to firms with at least X plants, and the third panel

restricts the analysis to industries where the largest firm has at least X plants. The fourth panel presents the

results by major industry. The fifth panel presents the results when excluding the firm’s own contribution

to a location employment, when using alternative ways to resolving ties (in terms of which firm has the

highest amount of plants in a location), and when using only non-imputed data.
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Table VI: The national size of the largest firm in town

(1) (2) (3) (4) (5)
lnLj∗(s) lnLj∗(s) lnLj∗(s) lnLj∗(s) lnLj∗(s)

Baseline
lnLs 0.194*** 0.293*** 0.395*** 0.486*** 0.594***

(0.00169) (0.00206) (0.00266) (0.00350) (0.00461)

Observations 3,131,324 2,551,226 1,984,474 1,473,278 1,006,305
R-squared 0.593 0.608 0.616 0.630 0.644
SIC8 FE Yes Yes Yes Yes Yes
M 3 6 12 24 48

Firms with at least X plants Baseline X = 10 X = 20 X = 50 X = 100
lnLs 0.395*** 0.239*** 0.191*** 0.158*** 0.131***

(0.00266) (0.00620) (0.00659) (0.00729) (0.00811)

Observations 1,984,474 356,238 308,839 253,996 211,517
R-squared 0.616 0.561 0.564 0.560 0.554
SIC8 FE Yes Yes Yes Yes Yes
M 12 12 12 12 12

Industries where largest firm has at least X plants Baseline X = 10 X = 20 X = 50 X = 100
lnLs 0.395*** 0.411*** 0.430*** 0.471*** 0.516***

(0.00266) (0.00276) (0.00291) (0.00325) (0.00366)

Observations 1,984,474 1,390,883 1,125,690 813,539 616,248
R-squared 0.616 0.613 0.609 0.605 0.600
SIC8 FE Yes Yes Yes Yes Yes
M 12 12 12 12 12

By major industry Baseline Manufacturing Services Retail Trade FIRE
lnLs 0.395*** 0.0746*** 0.279*** 0.562*** 0.557***

(0.00266) (0.00549) (0.00489) (0.00491) (0.00729)

Observations 1,984,474 245,343 647,569 421,352 133,956
R-squared 0.616 0.256 0.347 0.679 0.557
SIC8 FE Yes Yes Yes Yes Yes
M 12 12 12 12 12

Baseline Excluding Own Discarding Largest Firm Non-imputed
Contribution Ties Among Ties

lnLs 0.395*** 0.372*** 0.617*** 0.694*** 0.404***
(0.00266) (0.00491) (0.00386) (0.00276) (0.00288)

Observations 1,984,474 568,124 1,449,578 1,984,474 1,666,909
R-squared 0.616 0.550 0.604 0.585 0.618
SIC8 FE Yes Yes Yes Yes Yes
M 12 12 12 12 12

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: The table presents the results of regressing the log of the national size of the firm with most plants in a location on the log
of the employment density of the location and industry fixed effects. The first panel presents the results as we vary M . Panels 2 to 5
use M = 12. The second panel presents the results for firms with at least X plants. The third panel presents the results for industries
with at least one firm with X plants. The fourth panel presents the results by major industry. The fifth panel presents the results
when excluding the firm’s own contribution to employment in a location, when discarding locations where there is a tie in the identity
of the firm with most plants or using the size of the largest firm in this case, and when using only non-imputed data.
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E Span of Control

In this section we present several robustness checks to our span-of-control results. Table VII presents the

results of regressing the log of the average plant employment of a firm within a location on the firm’s log

national employment, and controlling for the firm’s log number of plants in the location and square of the

log number of plants in the location. In all cases, we subtract the own firm contribution of employment

in a location from that firm’s total employment. The first panel presents the results for different values of

M . The second panel restricts the analysis to firms with at least X plants, while the third panel restricts

the analysis to industries where there is one firm with at least X plants. The fourth panel presents the

results by major industry. Table VIII presents some additional robustness results. The first panel presents

the regression results without subtracting the own firm contribution of employment in a location from that

firm’s total employment. Panels 2 and 3 subtract the own firm contribution of employment in a location from

that firm’s total employment. Panel 2 adds higher order terms of the log of the number of establishments

of a firm in a location as controls, while Panel 3 restricts attention to non-imputed data.
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Table VII: Span of Control

(1) (2) (3) (4) (5)
ln l̄js ln l̄js ln l̄js ln l̄js ln l̄js

Baseline
lnLj,−js 0.0925*** 0.103*** 0.114*** 0.123*** 0.131***

(0.00101) (0.000918) (0.000897) (0.000911) (0.000962)
lnnjs 0.131*** 0.109*** 0.137*** 0.163*** 0.172***

(0.0171) (0.0114) (0.00897) (0.00753) (0.00682)
(lnnjs)

2 0.00245 -0.0502*** -0.0813*** -0.0852*** -0.0811***
(0.0135) (0.00715) (0.00447) (0.00316) (0.00251)

Observations 311,244 376,723 409,364 408,521 386,094
R-squared 0.632 0.608 0.573 0.542 0.511
SIC8-location FE Yes Yes Yes Yes Yes
M 3 6 12 24 48

Firms with at least X plants Baseline X = 10 X = 20 X = 50 X = 100
lnLj,−js 0.114*** 0.154*** 0.187*** 0.233*** 0.275***

(0.000897) (0.00157) (0.00190) (0.00241) (0.00296)
lnnjs 0.137*** -0.0121 -0.0765*** -0.132*** -0.168***

(0.00897) (0.00960) (0.00990) (0.0104) (0.0111)
(lnnjs)

2 -0.0813*** -0.0339*** -0.0188*** -0.00932* -0.00158
(0.00447) (0.00457) (0.00465) (0.00494) (0.00528)

Observations 409,364 233,744 197,273 157,980 126,999
R-squared 0.573 0.658 0.686 0.714 0.746
SIC8-location FE Yes Yes Yes Yes Yes
M 12 12 12 12 12

Industries where largest firm has at least X plants Baseline X = 10 X = 20 X = 50 X = 100
lnLj,−js 0.114*** 0.114*** 0.112*** 0.108*** 0.104***

(0.000897) (0.000897) (0.000898) (0.000901) (0.000911)
lnnjs 0.137*** 0.133*** 0.127*** 0.102*** 0.0720***

(0.00897) (0.00895) (0.00894) (0.00888) (0.00883)
(lnnjs)

2 -0.0813*** -0.0797*** -0.0768*** -0.0673*** -0.0564***
(0.00447) (0.00446) (0.00444) (0.00438) (0.00431)

Observations 409,364 405,623 394,807 369,321 336,424
R-squared 0.573 0.573 0.574 0.577 0.588
SIC8-location FE Yes Yes Yes Yes Yes
M 12 12 12 12 12

By major industry Baseline Manufacturing Services Retail Trade FIRE
lnLj,−js 0.114*** 0.154*** 0.130*** 0.124*** 0.0627***

(0.000897) (0.0104) (0.00214) (0.00118) (0.00180)
lnnjs 0.137*** 1.127*** 0.325*** -0.0506*** 0.126***

(0.00897) (0.145) (0.0281) (0.0109) (0.0159)
(lnnjs)

2 -0.0813*** -0.252** -0.121*** -0.0451*** -0.0398***
(0.00447) (0.102) (0.0164) (0.00544) (0.00720)

Observations 409,364 8,864 95,301 164,941 84,798
R-squared 0.573 0.541 0.506 0.665 0.442
SIC8-location FE Yes Yes Yes Yes Yes
M 12 12 12 12 12

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: The table presents the results of regressing the log of the average plant employment of a firm within a location on the log
national employment of the firm (excluding the own firm contribution of employment in a location from that firm’s total employment),
industry fixed effects and controls for the number of plants that the firm has in the location. The first panel presents the results for
different values of M . Panels 2 to 4 use M = 12. The second panel restricts the analysis to firms with at least X plants, while the
third panel restricts the analysis to industries where there is one firm with at least X plants. The fourth panel presents the results by
major industry. In all cases, we subtract the own firm contribution of employment in a location from that firm’s total employment.
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Table VIII: Span of Control: Additional Exercises

(1) (2) (3) (4) (5)
ln l̄js ln l̄js ln l̄js ln l̄js ln l̄js

lnLj 0.216*** 0.240*** 0.277*** 0.318*** 0.371***
(0.000531) (0.000495) (0.000501) (0.000528) (0.000571)

lnnjs -0.367*** -0.548*** -0.636*** -0.714*** -0.814***
(0.0156) (0.00924) (0.00679) (0.00558) (0.00486)

(lnnjs)
2 0.0807*** 0.0737*** 0.0544*** 0.0560*** 0.0605***

(0.0131) (0.00598) (0.00341) (0.00240) (0.00187)

Observations 2,033,197 2,574,018 3,009,650 3,343,237 3,592,041
R-squared 0.597 0.568 0.550 0.544 0.552
SIC8-location FE Yes Yes Yes Yes Yes
M 3 6 12 24 48

lnLj,−js 0.0925*** 0.103*** 0.114*** 0.123*** 0.131***
(0.00101) (0.000918) (0.000897) (0.000911) (0.000963)

lnnjs -0.0310 0.206*** 0.319*** 0.319*** 0.339***
(0.0497) (0.0335) (0.0256) (0.0211) (0.0186)

(lnnjs)
2 0.268*** -0.211*** -0.344*** -0.278*** -0.274***

(0.0890) (0.0570) (0.0398) (0.0297) (0.0235)
(lnnjs)

3 -0.102** 0.0688** 0.0953*** 0.0575*** 0.0559***
(0.0430) (0.0278) (0.0183) (0.0125) (0.00901)

(lnnjs)
4 0.00909 -0.00757** -0.00840*** -0.00367** -0.00385***

(0.00558) (0.00385) (0.00248) (0.00156) (0.00103)

Observations 311,244 376,723 409,364 408,521 386,094
R-squared 0.632 0.608 0.573 0.542 0.512
SIC8-location FE Yes Yes Yes Yes Yes
M 3 6 12 24 48

Non-Imputed
lnLj,−js 0.0854*** 0.0947*** 0.106*** 0.115*** 0.125***

(0.00114) (0.00104) (0.00101) (0.00102) (0.00107)
lnnjs 0.193*** 0.153*** 0.154*** 0.174*** 0.173***

(0.0208) (0.0138) (0.0104) (0.00863) (0.00770)
(lnnjs)

2 -0.0165 -0.0546*** -0.0777*** -0.0830*** -0.0795***
(0.0169) (0.00898) (0.00527) (0.00372) (0.00294)

Observations 227,058 280,597 310,989 317,407 306,306
R-squared 0.647 0.625 0.592 0.563 0.535
SIC8-location FE Yes Yes Yes Yes Yes
M 3 6 12 24 48

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: The table presents the results of regressing the log of the average plant employment of a firm within a location on the log
national employment of the firm, industry fixed effects and controls for the number of plants that the firm has in the location. The
first panel presents the results for different values of M , without excluding the own firm contribution of employment in a location from
that firm’s total employment. Panels 2 and 3 exclude the own firm contribution of employment in a location from that firm’s total
employment. Panel 2 includes higher order terms of the log of the number of establishments of a firm in a location as control variables.
Panel 3 restricts attention to non-imputed data.
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F Numerical Exploration: Algorithm

In this section we describe the algorithm that we used to solve for the industry equilibrium. Our algorithm

exploits the first order conditions of the firm’s problem (equations 4 and 5),

xsz
ε−1
j κ′(njs) ≤ Rs + λj , with equality if njs > 0, and

λj = −d[z(qj , Nj)
ε−1]

dNj

∫
s
xsκ(njs)ds,

where zj = z(qj , Nj) with Nj =
∫
s njsds, xs = Is/(ε−1)

Zε−1
s

with Zs =
(∫

j z
ε−1
j κ(njs)dj

) 1
ε−1

, and Rs = R(Is).

Our algorithm iterates on three univariate functions, Zs ∀ s, and {Nj , λj} ∀ j. Let t = 0, 1, 2, ... denote the

iteration round. Given an initial guess or the results of the previous iteration, Zt−1
s ∀ s, and {N t−1

j , λt−1
j } ∀ j,

we can compute the following objects: (i) ntj,s ∀ j, s (using equation 4), (ii) N t
j =

∫
s n

t
jsds, (iii) ztj = z(qj , N

t
j ),

(iv) Zts =

(∫
j

(
ztj

)ε−1
κ(ntjs)dj

) 1
ε−1

, (v) xts = Is
(ε−1)(Zts)

ε−1 , and (vi) λtj = −
∫
s

∂z(qj ,N
t
j )ε−1

∂N xtsκ(ntjs)ds. We

repeat this procedure until a convergence criterion is satisfied, that is, until there is a t = t̃ such that

||Z t̃s −Z t̃−1
s ||+ ||N t̃

j −N t̃−1
j ||+ ||λt̃j − λt̃−1

j || ≤ ε ,

where || · || is the sup norm and ε is a small number.

We use a two dimensional grid of points to numerically integrate when necessary and to evaluate the

convergence criterion. Specifically, we use a two dimensional grid of S locations and J firms. For each

iteration, a sufficient state is the value of the functions Nj , λj , and Zts, at these grid points. For each point

j, s on the grid, we require only the values of Zt−1
s , N t−1

j , and λt−1
j to evaluate ntjs. To find N t

j , numerically

integrate across the locations using the trapezoid rule and the values of ntjs at each of the S location grid

points. Similarly, to find λt−1
j , we numerically integrate across locations. To find each location’s local

productivity, for any s, we numerically integrate across firms using the values of ztj and ntjs at each grid

point. This delivers new values of the functions at each of the S × J grid points. Finally, to evaluate the

norms, we evaluate the convergence criterion by numerically integrating using the grid points.

In our numerical simulation, we used J = 50 and S = 100, but we found no noticeable difference in the

solution when we used a grid of J = 30 and S = 50.

A complication arises due to the fact that κ(n) is linear in the neighborhood of n = 0 (see Lemma 3).

Because of this linearity, njs move quite a bit across iterations in response to very small changes in Zs, Nj

and λj . This can generate cycles in the iteration process. We handle this issue in two ways.

First, at each iteration, we do not fully update the policy functions. That is, we evaluate iteration t+ 1

using Z̃ts, Ñ t
j and λ̃tj instead of Zts, N t

j and λtj , where Z̃ts = ςZt−1
s + (1− ς)Zts, Ñ t

j = ςN t−1
j + (1− ς)N t

j , and

λ̃tj = ςλt−1
j + (1− ς)λtj , where ς ∈ (0, 1) is a dampening parameter. In principle, there exists a ς < 1 such

that cycles are not a concern. However, in many situations (i.e. sets of parameter values) the low degree of
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updating of the policy functions makes the code extremely slow.44 Thus, we take an additional step.

Second, we replace the function κ(n) with

κ̂(n) = αH(n) + (1− α)κ(n) ,

where H(n) = 1 − e−n/h. Notice that H′(n) > 0, H′′(n) < 0, with H(0) = 0, limn→∞H(n) = 1.45 As a

result, κ̂′(n) > 0, κ̂′′(n) < 0, with κ̂(0) = 0, limn→∞ κ̂(n) = 1.

That is, in the iteration process we use κ̂(n) instead of κ(n). In our experiments, a combination of

ς > 0 and α > 0 are able to handle cycles and thus allows the code to converge quickly. For the numerical

explorations presented in this paper we use ς = 0.97 and α = 0.0001.

To ensure that this approximation yields an accurate solution, we can evaluate whether the resulting

policy function found using κ̂ is the solution to each firm’s true problem that uses κ. Let Ẑs, N̂j and λ̂j

denote the solution of the iteration process (i.e. once the convergence criterion is satisfied) when we solve

the firms problem using κ̂(n). We can also easily obtain n̂js, ẑj = z(qj , N̂j), and x̂s. To gauge the accuracy

of the approximate solution, we compute,

absolute error =

∫
s

∫
j
1 [n̂js > 0]

error in equation 4︷ ︸︸ ︷[
x̂sẑ

ε−1
j κ′(n̂js)− (Rs + λ̂j)

]
djds ,

relative error =

∫
s

∫
j 1 [n̂js > 0]

[
x̂sẑ

ε−1
j κ′(n̂js)− (Rs + λ̂j)

]
djds∫

s

∫
j 1 [n̂js > 0] (Rs + λ̂j)djds

.

That is, the first expression computes the absolute error of the allocation using κ̂(n), but evaluating the

first order condition using κ(n), while the second expression provides the absolute error, relative to the level

of costs for firm j in location s, as described by the RHS of equation 4. For our baseline equilibrium, we

find that absolute error = 0.00008, and relative error = 0.000025. That is, the absolute error is 0.0025% of

the average level of the RHS of the first order condition. This provides reassurance that the solution under

κ̂(n) is a good approximation of the actual solution.

G Numerical Computation of Bounds π̄k∆
j and πk∆

j

In this section we provide a numerical example of the upper and lower bounds π̄k∆
j and πk∆

j for any given

k and ∆. We then use this example to discuss how the gap between these bounds changes with ∆.

We begin by noticing that the expression for the upper bound π̄k∆
j presented in Claim A.11 can be

44For high enough values of ς the code can take many hours to converge, even when J and S are small.
45The parameter h allows us to modify the concavity of the function H(n). Here, we used h = 0.01.
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written as

π̄k∆
j ≡ sup

{ni≥0}

∑
i∈Ik
−nik2Rki ξ + z

qj ,∑
i∈Ik

nik
2

ε−1 ∑
i∈Ik

D̄k
i b̄
k
i k

2κ(ni) + z (qj , 0)ε−1 D̄b̄k−1

∫ k

0
t

(
δ

∆

)1−ε
dδ .

A similar expression can be obtained for πk∆
j . We can obtain expressions for ni, the number of plants in

square Ski , from the first order condition,

z

qj ,∑
i∈Ik

nik
2

ε−1

D̄k
i b̄
k
i κ
′(ni) = Rki −

d
[
z
(
qj ,
∑

i∈Ik nik
2
)ε−1

]
dni

∑
i∈Ik

D̄k
i b̄
k
i κ(ni) .

Again, a similar first-order condition can be produced for the number of establishments in each location

implied by the lower bound.

For given vectors {D̄k, b̄k, Rk}i∈Ik and {Dk, bk, Rk}i∈Ik , we use the first order conditions to obtain n̄i and

ni for firm j, the solutions to the two maximization problems. To do this, notice that the first order condition

closely resembles that one presented in (4), and thus we exploit the procedure presented in Appendix F.

With expressions for n̄i and ni we can then readily compute π̄k∆
j and πk∆

j .

For the example presented below, we restrict our attention to space defined in a unit square, S = [0, 1]2,

and we assume that for any {s1, s2} ∈ S we have that bs = 50(1 + s1)(1 + 2s2), Ds = 20(1 + s1)(1 + 2s2),

and Rs = 0.1(1 + s1)(1 + s2). Further, we set ε = 2, qj = 1, and we follow Section 3.1 and assume that

t(δ/
√
φ) = eδ/

√
φ with φ = 0.04. Likewise, we set z(q,N) = qe−N/σ with σ = 5.

For a given k, we divide S into squares with side of length k. We do this for various values of k ranging

from 1/2 to 5/1000. Because the number of partitions equals (1/k)2, the number of squares in Ik ranges from

4 to 40, 000. Then, for a fixed value of ∆, let k (∆) denote which partition provides the tightest normalized

range within the upper and lower bounds, k(∆) = arg mink

(
π̄k∆
j − πk∆

j

)
/
[

1
2

(
π̄k∆
j + πk∆

j

)]
. The function(

π̄
k(∆)∆
j − πk(∆)∆

j

)
/
[

1
2

(
π̄
k(∆)∆
j + π

k(∆)∆
j

)]
provides a good notion of the tightness of the bounds.

The left panel of Figure G.1 presents the normalized tightest bounds for the example we explore in this

section, and the right panel presents the (log of the) average total number of establishments implied by the

upper and lower bounds for the case k = 0.005. The figure shows that the bounds are not particularly tight

when ∆ is large, but they tighten as ∆ falls. Consistent with our theoretical results, the bounds become

very tight as ∆ approaches zero. Likewise, the results presented in the right panel suggest that the bounds

are tight when ∆ is such that firms operate many plants, but less tight when ∆ is large and the firm operates

few plants. For example, if the firm were to operate over 1,000 establishments, the bounds appear to be

very tight with a normalized gap close to zero. However, if the firm operates 10 total establishments, the

normalized gap is around 0.7.
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Figure G.1: Bounds

Normalized tightest bound Number of establishments, k = 0.005

H A discrete example with firms with few plants

Our approach to the problem of choosing plant locations was to focus on the limiting economy as ∆ ap-

proaches zero. In this limit, the problem admits an analytical solution that we use to derive theoretical

predictions that we then corroborate empirically. While our theoretical results regarding uniform conver-

gence of the policy function are reassuring of the relevance of these predictions for industries for which the

limit is a good approximation, they may be less relevant for industries in which plants tend to have large

catchment areas.

In this section, we use two numerical examples to explore firm choices outside of the limit, i.e. large ∆.

In both examples, firms choose to have a small number of plants. In the first example, ∆ is very large and

firms choose to have either one or two plants, as transport costs are low. In this example, we run the same

regressions as in the main text of the paper and fail to detect sorting. In the second example, we lower

∆ and solve for the resulting plant configuration. Now firms place more plants across locations. In this

example, we detect sorting that is consistent with the theoretical predictions of the limiting economy.

To make the numerical exercise feasible and operational we make a set of modifications to our model:

(i) we follow Tintelnot (2016) and assume that a firm produces a continuum of goods, where each location

that may be used to produce the good has a different idiosyncratic cost of producing a particular good, and

(ii) we assume that there is only a discrete, and small, set of feasible locations. Modification (ii) allows us

to use the toolkit in Arkolakis et al. (2017) to solve the plant location problem for each firm. Modification

(i) increases the number of configurations that can be ruled out before resorting to evaluating all remaining

combinations (the brute force approach).
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Consider a set of discrete locations, where s denotes a location. Every firm produces a continuum of

goods, i ∈ [0, 1]. For each good, each location where the firm places a plant o has an idiosyncratic cost shifter

aoi with Pr [aoi > a] = e−a
θ
, so that the unit cost of supplying good i from a plant in location o to location s

is w
BoZ

aoiTos. Thus, the minimal cost to the firm of supplying good i to location s is λis = mino∈O
w
BoZ

aoiTos,

with associated distribution Pr(λis > λ) = e
−λθ

∑
o∈O

(
BoZ
wTos

)θ
.

Demand for each good at each location s is Dsp
−ε, which implies a markup of ε

ε−1 > 1. Given a set of

active plants O, a firm’s total profits are

π(O,Z) =

(
1

ε− 1

)(
ε

ε− 1

)−ε∑
s

Ds

∫ 1

0
λ1−ε
is di−

∑
o∈O

Roξ ,

where, given the distribution for λis,
∫ 1

0 λ
1−ε
is di = Γ

(
1− ε−1

θ

) [∑
o∈o

(
BoZ
wTos

)θ] ε−1
θ

. Therefore, a firm’s profits

from operating a set of plants O are given by

π(O,Z) =

(
1

ε− 1

)(
ε

ε− 1

)−ε
Γ

(
1− ε− 1

θ

)∑
s

Ds

[∑
o∈O

(
BoZ

wTos

)θ] ε−1
θ

−
∑
o∈O

Roξ ,

where plant employment in location o is given by

lo =
ε

w

(
ε

ε− 1

)−ε
Γ

(
1− ε− 1

θ

)∑
s

Ds

[∑
õ∈O

(
BõZ

wTõs

)θ] ε−1
θ

(
BoZ
wTos

)θ
∑

õ∈O

(
BõZ
wTõs

)θ .
Notice that we recover the specification in the main text, where each location in space is served by only one

the firm’s plants, when θ →∞.46 At each location s a firm with productivity q sells goods at price

ps(q) =
ε

ε− 1

 ∑
o∈O(q)

(
BoZ(q,N(q))

wTos

)θ− 1
θ

.

As a result, the price index in location s is given by Ps =
(∑

q[ps(q)]
1−ε
) 1

1−ε
.

For the numerical exploration of the model, we assume that space is characterized by an evenly spaced

grid dividing the unit square into N
2

smaller squares (i.e., an N × N grid). The center of each square is

a location. Plants can be set up at all locations. In our example, N
2

= 36. This results in more than

46It is straightforward to show how we recover our specification when θ diverges to infinity,

lim
θ→∞

[∑
o∈O

(
BoZ

wTos

)θ] ε−1
θ

= lim
θ→∞

∑
o∈O

((
BoZ

wTos

)ε−1
) θ
ε−1


ε−1
θ

= max
o∈O

(
BoZ

wTos

)ε−1

.
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68 billion (236) possible permutations of the allocation of plants across space. We have been unable to

consistently solve numerically cases (for any parameterization) with a larger set of potential locations. With

more locations, locations get closer to each other and thus are “more similar to each other”— given that

fundamentals are drawn from continuous distributions. Hence, the pruning approach in Arkolakis et al.

(2017) cannot easily eliminate dominated plant configurations, and thus one must resort to an approach

that considers all of the potential configurations, which becomes quickly infeasible as the number of locations

expands.

We parameterize the model as follows. We let ε = 2, θ = 2, w = 1, Bo = 1 ∀ o, Rs = 3
2 sin((3πx)(πy))+ 3

2 ,

Ds = −3
2 sin((3πx)(πy))+ 3

2 . Further, Tos = 1+δos
∆ , Z(q,N) = q

1+(∆2N)0.45 , and ξ = ∆2. Finally, we solve the

plant location problem for 15 firm types, with intrinsic productivity levels q ∈ {3, 4, 5, 7, 9, 10, 12, 13, 15, 17, 18,

20, 22, 23, 25}, and we study the resulting plant allocations for ∆ ∈ {9, 1}.
Table IX compares the number of plants, n∗(q), chosen by firms of different productivity, q, as we vary ∆.

When ∆ = 9, all firms set up only one plant, with the exception of firms with the highest productivity levels

which set up two plants. Also, all firms place one plant at the same location, the location that minimizes

production costs. This follows from the fact that for high ∆, transportation costs are low regardless of

distance, so most firms find it optimal to serve customers with just one plant. For ∆ = 1 transport costs

increase, and firms place substantially more plants across space in order to save on transport costs. Now,

we observe substantial variation in the number of plants across firms.

Table IX: Number of plants per firm, across ∆

q 3 4 5 7 9 10 12 13 15 17 18 20 22 23 25

∆
9 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
1 9 9 10 13 15 15 17 18 19 20 20 20 22 22 22

We now replicate the empirical analysis in the main body of the paper. We first divide our N ×N grid

on the unit square into SM = N
2
/M2 sub-squares, each sub-square consisting of an M ×M grid. Within

each sub-square, i, let n∗i (q) be the number of active plants operated by a firm with productivity q, where∑SM
i=1 n

∗
i (q) = N∗(q) denotes the total number of active plants for that firm across all locations. Also, let Li

represent average population in sub-square i, Li = (1/M2)
∑

s∈i
DsP

−ε
s

w .47 As in the main body of the paper,

we use these objects to construct a measure of average density across locations for a firm with productivity

q as,

L(q) =

SM∑
i=1

n∗i (q)

N∗(q)
× Li .

47We have that demand at location s satisfies Ds = wLsP
ε
s , which implies that population at location s is given by Ls =

DsP
−ε
s
w

.
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Finally, we define total firm employment as L(q) =
∑

s ls(q), where ls(q) is the employment of an active

plant of a firm with productivity q at location s.

Table X: Sorting: Firm Size and Local Density in a solved example

∆ = 9 ∆ = 9 ∆ = 1 ∆ = 1

(1) (2) (3) (4)
ln L̄(q) ln L̄(q) ln L̄(q) ln L̄(q)

lnL (q) 0.0150 -0.0343 0.0167*** 0.0172**
(0.0093) (0.0215) (0.005) (0.0048)

Observations 15 15 15 15
R-squared 0.180 0.180 0.429 0.473
M 2 3 2 3

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table X presents the analogue of Table I for the two discrete economies with ∆ = 9 and ∆ = 1. When

∆ = 9, we find no significant relationship between a firm’s employment and local weighted employment.

When M = 3, there is a negative but statistically insignificant relationship between a firm’s employment

and its local weighted population. In other words, more productive firms seem to have a larger footprint

in less profitable locations. This last result showcases how, for high values of ∆, the predictions implied by

Proposition 5 can fail to explain the behavior of firms. In contrast, when ∆ = 1 the estimated relationship is

positive and significant for both values of M . Thus, for ∆ = 1, the results are consistent with the predictions

of the proposition, and our empirical findings in Table I.

Of course, we acknowledge that this is just an example and that, in other cases, we might need to use

even lower values of ∆ to obtain allocations in the discrete economy that exhibit the properties derived for

our limit economy. Unfortunately, the inability to reliably solve numerical examples with more locations

restricts our ability to test the accuracy of our continuous limit in more complex examples. In any case,

using our insights for environments where firms have very few plants, seems unwarranted.
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